NGHIÊN CỨU ĐÁNH GIÁ VỊ TRÍ VÀ KÍCH THƯỚC LÕ RÕNG TRONG BÊ TÔNG BẰNG KỸ THUẬT GAMMA TÁN XẠ NGƯỢC

L. T. SON^{1,2}, C. V. TẠO², T. T. THANH², V. H. NGUYÊN², P. T. PHÚC¹, O. Q. SON¹, L. A. TUYÊN^{1,2}, P. C. THÀNH¹, D. V. HOÀNG¹

¹Trung tâm Hạt nhân TP. HCM – 217 Nguyễn Trãi, Q.1, TP. HCM

²Đại học Khoa học Tự nhiên, ĐHQG TP. HCM – 227 Nguyễn Văn Cù, Q.5, TP. HCM

Email: lothaison@gmail.com, cvtao@hcmus.edu.vn, ttthanh@hcmus.edu.vn, vhnguyen@hcmus.edu.vn, vecol18@yahoo.com, quangsoncnt@gmail.com, tuyenluuanh@gmail.com

Tóm tắt: Trong nghiên cứu này, phương pháp gamma tán xạ sử dụng nguồn phóng xạ 137 Cs (5mCi) và đầu dò Na(Tl) với góc tán xạ 120^{0} đã được áp dụng để xác định vị trí và kích thước của lõ rỗng trong bê tông. Mẫu bê tông mật độ $2.3g/\text{cm}^{3}$ bề dày 10 cm với các lõ rỗng có đường kính thay đổi từ 1cm đến 3 cm theo mặt phẳng đo đạc đã được chế tạo cho các thí nghiệm. Phương pháp mô phỏng Monte-Carlo cũng được sử dụng để tính toán bề dày bão hòa và tối ưu một số thông số thực nghiệm. Các kết quả thu được chỉ ra rằng vị trí của các lõ rỗng đã được xác định tương đối chính xác, trong khi kích thước của các lõ rỗng có sự khác biệt so với giá trị thực tế. Kết quả của nghiên cứu cũng cho thấy kỹ thuật gamma tán xạ ngược có thể được áp dụng để xác định tốt vị trí, kích thước của các khuyết tật dạng lỗ rỗng bên trong vật liệu bê tông sau khi tối ưu các điều kiện khảo sát.

Từ khóa: Tán xạ ngược gamma, Tán xạ Compton.

1. GIỚI THIỆU

Tán xa ngược gamma là một trong những phương pháp kiểm tra không phá hủy (None Destructive Testing - NDT) được ứng dung rông rãi nhiều thập kỷ qua trên thế giới trong nhiều lãnh vực [1]. Ưu điểm nổi bật của kỹ thuật này so với kỹ thuật gamma truyền qua nằm ở chỗ chỉ cần tiếp cân đối tương từ một phía thay vì hai phía như chup ảnh bức xa tia X hay gamma truyền qua. Tuy nhiên, nhược điểm của phương pháp này nằm ở chỗ tín hiệu ghi nhận trên detector bi ảnh hưởng bởi các bức xa tán xa ngược không mọng muốn và nền Compton lớn. Trong những năm gần đây, kỹ thuật này này thu hút quan tâm nghiên cứu và ứng dung cả ở trong cũng như ngoài nước. Trong số các công trình nổi bật, Amandeep Sharma và các cộng sự [1] đã nghiên cứu khả năng sử dụng tia gamma tán xạ trong việc xác định vị trí của đường ống trong đất, xác định bề dày của thành ống, loại chất lỏng chảy bên trong và các vết rạn nứt bằng nguồn phóng xạ ¹³⁷Cs ghi nhận phổ bằng đầu dò NaI(Tl). Tiếp đó, M. Margret, và cộng sự [2] đã sử dụng gamma tán xạ trong việc xác định vị trí cốt thép bên trong khối bê tông tại độ sâu lên đến 60 mm với nguồn phóng xạ ¹³⁷Cs và đầu dò HPGe có độ phân giải cao. E.M Boldo và C.R. Oppoloni [3] cũng đã dùng phương pháp tán xạ Compton để tiến hành thực nghiêm xác đinh vi trí của các lỗ rỗng và thanh thép bên trong khối bê tông cốt thép. Gần đây nhất, P. Priyada và cộng sự [4] mô tả ứng dụng kỹ thuật gamma tán xạ trong đánh giá không phá hủy các lỗ rỗng trên khối bê tông có các đường kính khác nhau, và tái tạo lại hình ảnh về vị trí và kích thước của các lỗ rỗng. Ở trong nước, các nghiên cứu tương tự đã được thực hiện bởi một số nhóm nghiên cứu tai Đai học Khoa học tư nhiên (Đai học Quốc gia TP. HCM) và Trung tâm Hạt nhân TP. HCM (Viantom) [5-8]. Nghiên cứu gần đây nhất của chúng tôi trên hệ đo sử dụng nguồn ¹³⁷Cs hoạt độ 5 mCi, đầu dò NaI(Tl), bia tán xạ là thép C45 dạng tấm cho thấy phương pháp này có khả năng áp dụng cho việc xác định kích thước và vị trí lỗ rỗng trong các một số vật liệu xây dựng ở điều kiện thực tế của Việt Nam [6].

Trong nghiên cứu này, chúng tôi đã tiến hành nghiên cứu một cách hệ thống bằng kết hợp thực nghiệm và mô phỏng Monte- Carlo sử dụng chương trình MCNP đối với phương pháp gamma tán xạ sử dụng nguồn phóng xạ ¹³⁷Cs (5mCi) và đầu dò NaI(Tl) với góc tán xạ 120⁰ để xác định vị trí và kích thước của lỗ rỗng trong bê tông công trình.

2. PHƯƠNG PHÁP NGHIÊN CỨU

2.1. Chuẩn bị mẫu bê tông

Để tiến hành thực nghiệm, khối bê tông hình hộp chữ nhật kích thước 10x20x40cm có mật độ 2,3g/cm³ chứa các lỗ rỗng kích thước ở các vị trí khác nhau đã được chế tạo. Theo đó, các lỗ rỗng có dạng trụ với đường kính 3cm; 2,5 cm; 2 cm; 1,5 cm; 1 cm. Khoảng cách từ tâm các lỗ rỗng đến mặt trái của khối bê tông theo thứ tự là 6,7 cm; 15,5 cm; 24,0 cm; 30,7 cm và 36,4 cm. Các lỗ rỗng nằm cách bề mặt phẳng thí nghiệm (mặt trước của khối bê tông) 2 cm.

2.2. Thực nghiệm ghi nhận gamma tán xạ ngược

Mẫu được quét từ trái sang phải, từ dưới lên trên. Mỗi bước dịch chuyển 2 cm và thời gian đo ở mỗi vị trí là 3600s với nguồn phóng xạ 137 Cs (5mCi) và đầu dò NaI(Tl) tại góc tán xạ 120^{0} (Hình 1)

Năng lượng của gamma sau khi tán xạ Compton được xác định bởi công thức:

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_{e}c^{2}}(1 - \cos\theta)}$$
(2.1)

Trong đó:

 E_{γ} : Năng lượng của gamma tới; E_{γ} : Năng lượng của gamma sau khi tán xạ Compton m_ec^2 : Năng lượng nghỉ của electron; θ : Góc tán xạ

Hình 1. Quá trình tán xạ một lần của tia gamma trên bia

Trong Hình 1, quá trình tán xạ của tia gamma từ nguồn đến đầu dò được chia thành 3 giai đoạn [7]. Cường độ tán xạ của chùm tia gamma đi từ điểm P đến đầu dò được xác định bởi công thức (2.2):

$$I_{3} = K.e^{-\left(\frac{\mu(E)}{\rho}\right)\rho.x}e^{-\left(\frac{\mu(E)}{\rho}\right)\rho.x'}$$
(2.2)

Như vậy, cường độ tán xạ I₃ phụ thuộc vào hệ số K hay nói cách khác, I₃ phụ thuộc vào mật độ electron ρ_e trong thể tích tán xạ. Điều này có nghĩa là nếu cường độ tán xạ một lần có sự thay đổi thì mật độ tại vùng khảo sát cũng có thay đổi.

Trên cơ sở quan trọng đó, dựa vào sự thay đổi cường độ tán xạ một lần để khảo sát lỗ rỗng bên trong khối bê tông. Trong quá trình thực nghiệm, mật độ bia tại vùng khảo sát được thay đổi trong khi cấu hình của hệ đo được giữ không đổi. Vùng khảo sát hay thể tích tán xạ là phần thể tích giao nhau giữa độ mở của ống chuẩn trực nguồn và trường nhìn của đầu dò đối với bia. Thí nghiệm được bố trí với những đặc điểm sau:

- Khoảng cách từ nguồn đến bia tán xạ: 22,5 cm
- Khoảng cách từ đầu dò đến bia tán xạ: 28 cm
- Trục của hộp đựng nguồn vuông góc với mặt bia tán xạ
- Góc tán xạ: 120°

Hình 2. Mô hình bố trí hệ đo (a) và bố trí hệ đo thực tế (b)

Tại những vị trí có khuyết tật trong bia thì mật độ tại đó sẽ thay đổi so với những vị trí không có khuyết tật. Điều này dẫn đến cường độ tán xạ một lần tại những vị trí có khuyết tật cũng thay đổi. Phổ tán xạ được ghi nhận bao gồm phổ tán xạ một lần, tán xạ nhiều lần và phổ phông. Vì vậy để loại bỏ các số đếm không mong muốn như số đếm phông và số đếm của tán xạ nhiều lần các phổ đo trên bia được trừ đi số đếm của một phổ đo không có bia (phông) phổ này sau đó sẽ được tách đỉnh tán xạ một lần bằng phần mềm tách và làm khớp phổ Colegram, diện tích đỉnh tán xạ một lần tỉ lệ với cường độ tán xạ của chùm tia gamma.

2.3. Mô phỏng Monte-Carlo

Song song với thực nghiệm, chúng tôi cũng đã mô phỏng lại thực nghiệm bằng chương trình MCNP4C. Cấu hình mô phỏng được xây dựng tương ứng với các cấu hình thực nghiệm nhằm đánh giá độ tin cậy cũng như các ảnh hưởng của bố trí thí nghiệm đến chất lượng phép đo của kỹ thuật này.

Hình 3. Cấu hình mô phỏng MCNP

3. KẾT QUẢ VÀ THẢO LUẬN

Đầu tiên mô phỏng MCNP được tiến hành để xác định bề dày bão hòa của mẫu bê tông. Trong các mô phỏng cấu hình detector được chúng tôi mô phỏng gần thực tế nhất có thể, và tally F8 được sử dụng để ghi nhận lại cường độ gamma tán xạ ngược.

Bề dày mẫu bê tông (cm)	Cường độ tán xạ (số đếm/h)	Sai số		
2	44662	1454		
3	52711	2071		
4	57173	2619		
5	58761	3166		
6	60418	3509		
7	61016	3693		
7,2	61151	3723		
7,4	61365	3789		
7,6	61461	3838		
8	61625	3961		
9	61652	4001		

Bảng1. Kết quả mô phỏng bề dày bão hòa của mẫu bê tông

Kết quả từ Bảng 1 cho thấy bề dày bão hòa của mẫu bê tông đối với tia gamma có năng lượng 0,662 MeV là 8 cm.

Hình 4. Đồ thị biểu diễn bề dày bão hòa của bê tông với gamma năng lượng 0,662 MeV Bảng 2. Cường độ tán xạ một lần tại các vị trí khác nhau trên mẫu bê tông bằng thực nghiệm và

Bảng 2. Cương dọ tan xạ một lần tại các vị trì khác nhấu trên mấu bế tổng bảng thực nghiệm và mô phỏng, với X_n là tọa độ khảo sát theo trục hoành, Z_m là tọa độ khảo sát theo trục tung

Vi	Cường độ tán xạ một lần									
trí	Thực nghiệm									Mô phỏng
khảo										
sát	Z_0	Z_{20}	Z_{40}	Z ₆₀	Z_{80}	Z ₁₀₀	Z ₁₂₀	Z ₁₄₀	Z ₁₆₀	
X ₀	61819±347	70706±369	67534±352	58313±652	57362±419	62650±361	57229±369	56056±368	63604±326	153631±4780
X_{20}	42325±326	41821±643	39298±336	45728±580	38371±379	38267±379	35489±380	37807±335	33334±311	82721±3529
X_{40}	20677±295	22286±308	32551±324	33631±448	23653±328	27080±355	23144±320	22327±320	21785±291	62874±2682
X60	46694±317	42575±341	34272±323	36576±447	35541±382	23180±554	32909±322	30798±333	21702±328	72846±2858
X_{80}	53311±298	42875±347	40685±374	43299±682	40758±397	39305±386	28313±380	35351±357	25234±305	70624±2990
X_{100}	40074±330	41611±362	37013±354	47619±779	35968±409	37335±410	33929±372	36374±342	25467±319	68571±3082
X120	35571±338	36799±338	40043±361	42981±697	37004±384	27492±359	27443±370	26662±381	30435±304	64000±2929
X140	37977±332	36159±354	36102±369	29713±762	38034±356	25306±364	33036±358	23936±347	22486±311	51128±2389
X160	45097±346	42896±361	41423±360	32996±792	42698±386	28574±390	39009±391	27232±392	26896±342	72915±3203
X180	27037±342	44139±363	39903±377	34697±796	29241±419	39638±375	28992±413	27348±397	26205±349	69463±3075
X_{200}	26424±325	39438±354	28398±374	31371±514	29631±405	39404±393	28984±399	27634±370	25272±329	60562±3007
X_{220}	36489±353	25692±377	26296±350	27483±346	26514±749	36480±356	26062±352	25775±349	23357±339	59258±2440
X240	27867±310	37319±362	37753±375	37863±393	29741±395	28124±425	36074±370	27600±358	26216±354	62322±3225
X_{260}	38410±349	29127±366	28943±379	29257±383	30173±415	29432±410	29455±382	28109±378	27065±360	68044±3024
X280	26064±366	26439±356	34886±363	27961±347	28216±401	27299±412	27821±399	27091±345	25306±331	65011±3144
X300	26558±336	26388±368	26696±382	28019±373	35342±372	27317±397	27731±423	27650±334	25029±324	59714±3099
X320	35956±333	27374±395	27783±372	29287±393	30487±551	28034±424	28500±405	27583±372	27491±326	65172±3087
X340	32884±303	26697±347	27668±346	27848±335	30147±642	35559±367	33498±368	26896±342	24670±319	81296±3549
X360	26131±303	27811±342	34107±299	28405±335	39136±476	35137±316	27235±354	27812±349	31375±313	75849±3120

Hình 5. Đồ thị sự phụ thuộc cường độ tán xạ gamma trên mẫu bê tông có các lỗ rỗng phân bố theo đường kính khác nhau đo đạc bằng thực nghiệm và mô phỏng

Kết quả bề dày bão hòa là 8 cm bê tông đối với gamma năng lượng 0,662 MeV giúp khẳng định một lần nữa cấu hình thực nghiệm với các lỗ rỗng đường kính tối đa 3 cm và cách bề mặt bê tông 2 cm là phù hợp. Cũng từ kết quả này chúng tôi chỉ ra được giới hạn của phương pháp tán xạ ngược với nguồn ¹³⁷Cs đó là chỉ có thể xác định được vị trí và kích thước lỗ rỗng cách bề mặt bê tông dưới 8 cm.

Từ đồ thị sự phụ thuộc cường độ tán xạ gamma trên mẫu bê tông ở Hình 5 có thể thấy vị trí của các lỗ rỗng giữa thực nghiệm và mô phỏng là khá chính xác so với vị trí thực tế, trong khi kích thước của các lỗ rỗng có sự khác biệt so với giá trị thực tế. Nguyên nhân của sự khác biệt này xuất phát từ việc lựa chọn bước quét, tiết diện chùm tia và vị trí của các lỗ rỗng so với gốc tọa độ quét. Bước quét là 2cm gấp đôi tiết diện chùm tia (1cm). Trong khi đó lỗ rỗng có đường kính lớn nhất là 3 cm và đường kính nhỏ nhất là 1cm. Vị trí từ các mép trái của các lỗ rỗng so với gốc tọa độ không là bội số hay ước số của bước quét.

3. KẾT LUẬN

Trong nghiên cứu này, kỹ thuật đo gamma tán xạ ngược sử dụng nguồn phóng xạ 137 Cs (5mCi) và đầu dò NaI(Tl) với góc tán xạ 120^0 đã được nghiên cứu để áp dụng xác định vị trí và kích thước của lỗ rỗng trong bê tông công trình bằng cả thực nghiệm lẫn mô phỏng Montecarlo. Kết quả nghiên cứu đã chỉ ra bề dày bão hòa là 8 cm là phù hợp cho các khảo sát đối với vật liệu bê tông các lỗ rỗng đường kính tối đa 3 cm và cách bề mặt bê tông 2 cm. Các kết quả thu được chỉ ra rằng vị trí của các lỗ rỗng đã được xác định tương đối chính xác, trong khi kích thước của các lỗ rỗng có sự khác biệt so với giá trị thực tế. Các nghiên cứu sâu hơn và hệ thống hơn cả về thực nghiệm và mô phỏng, tính toán cần được tiến hành nhằm tối ưu hoạt độ nguồn, tiết diện chùm tia, bước quét thực nghiệm đối với kỹ thuật này trên đối tượng vật liệu bê tông.

TÀI LIỆU THAM KHẢO

- [1]. Amandeep Sharma, B.S. Sandhu and Bhajan Singh (2011), "A Gamma Ray Tomographic Densitometer System for the Investigation of Concrete Structure", *Physics Department*, *Punjabi University, Patiala -147002, India.*
- [2]. M. Margret, M. Menaka, B. Venkatraman and S. ChandraseFran (2014), "Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete", *Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India.*
- [3]. E.M. Boldo, C.R. Appoloni (2013), "Inspection of reinforced concrete samples by Compton backscattering technique", *State University of West of Parana, CCET, P.O. Box* 701, Zip Code 85819-000, Cascavel-PR, Brazil.
- [4]. P. Priyada, R. Ramar and Shivaramu (2013), "Application of gamma ray scattering technique for non-destructive evaluation of voids in concrete", *Radiologica Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, India.*
- [5]. Trương Thị Hồng Loan, Phan Thị Quý Trúc, Đặng Nguyên Phương, Trần Thiện Thanh, Trần Ái Khanh, Trần Đăng Hoàng (2008), "Nghiên cứu phổ gamma tán xạ ngược của đầu dò HPGe bằng chương trình MCNP", Tạp chí phát triển KH&CN, Tập 11, Số 06, 61-66.
- [6]. Võ Hoàng Nguyên (2014), Kiểm tra khuyết tật trên vật liệu thép C45 dạng tấm bằng thực nghiệm đo gamma tán xạ ngược, Luận văn thạc sĩ, Trường Đại học Khoa học Tự nhiên, ĐHQG - HCM.
- [7]. Lỗ Thái Sơn (2018), Khảo sát lỗ rỗng bê tông bằng gamma tán xạ và chụp ảnh bức xạ, Luận văn thạc sĩ, Trường Đại học Khoa học Tự nhiên, ĐHQG - HCM.
- [8]. Thạch Trung (2015), Khảo sát khuyết tật bên trong khối bê tông bằng phương pháp gamma tán xạ ngược, Luận văn thạc sĩ, Trường Đại học Khoa học Tự nhiên, ĐHQG -HCM.

STUDY TO EVALUATION POSITION AND SIZE OF VOIDS IN CONCRETE BY BACKSCATTERED GAMMA TECHNIQUE

L. T. $SON^{1,2}$, C. V. TAO^2 , T. T. $THANH^2$, V. H. $NGUYEN^2$, P. T. $PHUC^1$, O. Q. SON^1 , L.

A. TUYEN^{1,2}, P. C. THANH¹, D. V. HOANG¹

¹Center for Nuclear Techniques in Hochiminh city, 217 Nguyen Trai, D.1, Ho Chi Minh City

²University of Science, VNU-HCM, 227 Nguyen Van Cu, D. 5, Ho Chi Minh City

Email: lothaison@gmail.com, cvtao@hcmus.edu.vn, ttthanh@hcmus.edu.vn, vhnguyen@hcmus.edu.vn, vecol18@yahoo.com, quangsoncnt@gmail.com, tuyenluuanh@gmail.com

Abstract: In this study, the scattering gamma method used radioactive sources of 137 Cs (5mCi) and NaI (Tl) detector with 120^{0} scattering angles to determine the position and size of voids in concrete. Concrete samples having the density of $2.3g / cm^{3}$ thickness of 10 cm with voids diameter varying from 1cm to 3cm in the measurement plane have been made for experimental measurements. The obtained results indicate that the position of the voids has been determined relatively accurately, while the size of the voids is different from the actual value. This result shows that backscatter gamma technique can be applied to determine the position and size of defects inside concrete materials after optimizing investigating conditions.

Keywords: Gamma backscattering, Compton scattering.