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Abstract: In-core fuel management optimization (ICFMO) is a prominent problem in the 

nuclear engineering field. This is a multi-objective problem with large combinatorial 

solution space, multiple conflicting, nonlinear objective functions. In this paper, two 

meta-heuristic approaches, Differential evolution and Genetic algorithms were proposed 

to solve this problem. The optimal objectives are both the maximization of the length and 

the minimization of power peaking factor in a fuel cycle. The algorithms were applied to 

the Dalat nuclear research reactor (DNRR). Comparative analysis between two methods 

and with the actual work configuration was conducted. The results demonstrate that the 

performance of both algorithms is satisfactory and the DE is more effective than the GA 

in the DNRR case.  

Keywords: Differential evolution algorithm, genetic algorithm, fuel reloading 

optimization, nuclear reactor, DNRR  

1. INTRODUCTION 

 In the ICFMO problem, reloading and reshuffling of fuel assemblies in the nuclear 

reactor core is an optimization problem which means to find the best configuration of 

shuffling between fresh fuel and remnants from the previous cycle. It is known as a multi-

objective problem including the maximization of end of cycle reactivity, discharged burn-up 

and the minimization of power peaking, feed enrichment, the burnable poison inventory, 

where an improvement in one object may deteriorate another [1]. The obtained result is not 

the single best solution, but a set of solutions that are equally good. Traditional optimization 

techniques, such as out-in pattern, scatter loading, out-in scatter procedure [2] and the bi-

directional axial [3] cannot result in adequate solutions. Heuristic search programs applied to 

solve this problem showed more efficiently than the traditional methods but they usually get 

trapped in a local optimum and thus fail to obtain the global optimum solution [4]. 

 In recent years, the advanced meta-heuristic search approaches are being applied to 

many optimization problems due to their component of diversification that is used to explore 

the global search space to avoid being trapped in a local optimum. Evolutionary algorithms 

are classified under a family of algorithms for global optimization by the evolution of 

populations of individuals in nature [5]. They basically follow a specific strategy with 

different variations to select candidate elements from population set and apply crossover and 
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mutations to modify the elements to improve the quality of modified elements. Among the 

many evolutionary algorithms, the two similar and popular are the genetic algorithm (GA) [6] 

and differential evolution (DE) [7] which are performed by three evolutionary operators: 

selection, crossover, and mutation. Most of the applications of GA are applied to the discrete 

variable optimization problems which contain the fuel loading optimization problem. Several 

studies of the application of GA to loading pattern design indicated the potential results to 

various reactors [8-11]. Otherwise, the DE algorithm which is originally developed for 

continuous variable problems was found several applications in fuel assembly and core design 

optimal problem [12-13]. Although DE has been successful in numerical optimization, few 

works concern its usage for discrete optimization problems as reloading and reshuffling of 

fuel assemblies in the nuclear reactor core. 

 In the present work, binary mixed integer coded GA and discrete DE algorithm have 

been developed and applied to the problem of fuel loading optimization of the Dalat nuclear 

research reactor (DNRR). The 3D finite difference multi-group diffusion theory code 

CITATION [14] was used in the analysis of neutronics characteristics providing the values of 

keff and power peaking factor to the changes in the fuel loading pattern (LP). The group 

constants are generated by using WIMSD-5B [15] with ENDF/B-VII.0 nuclear data library. 

2. PROBLEM AND METHODOLOGY 

2. 1   Multi-objective optimization problem of the DNRR  

The fuel reloading optimization problem suggested for comparative analysis of the GA 

and new DE algorithms were performed to the Dalat nuclear research reactor (DNRR). This 

reactor operated with the nominal power of 500 kW, is an upgraded modification of 250 kW 

TRIGA Mark II since the 1980s. The reactor core loaded with the Russian fuel type VVR-M2, 

consists of 121 hexagonal cells of fuel bundles (FBs), control rods, irradiation channel, 

beryllium blocks, and aluminum chocks. The base LP was 100 FBs with 0 – 12.3% burn-up 

depicted in Figure 1. The maximum effective multiplication factor (keff) and minimum power 

peaking factor (PPF) were selected as the optimization criterions. According to the weighted 

sum method, the objective of the optimization problem was the maximum fitness function: 

0( 1) ( )effFitness k PPF PPF           (1) 

where PPF0 is an input factor that is chosen so that PPF is always lower than it; the 

coefficients   and   are the weighting factors for keff and PPF, respectively. 

 

Fig. 1 Base loading pattern of the fuel reloading optimization problem of the DNRR. 
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In this work, a new method based on GA was developed in conjunction with the 

junction with the weighted sum method to automatically determine the weighting factors (

,  ) in the objective function for the duration of the search process. The two search schemes 

of the weighting factors and the optimal fuel reloading patterns were implemented 

simultaneously. It is expected that the search direction is flexible and the search may move 

towards a set of approximate global optimal solutions. In the application of the proposed DE, 

PPF0 = 2 is an input factor that is chosen, the coefficients  = 1000 and  = 100 are the 

weighting factors for keff and PPF, respectively. These values of α and β are already used in 

the research works on the reactor fuel reloading optimization [16-17] and are considered to be 

good enough to make the search process give good results.  

2. 2 A binary mixed integer coded genetic algorithm 

The proposed GA works with two types of chromosomes: integer chromosome and 

binary chromosome. The integer chromosome represents fuel LPs and the binary chromosome 

represents weighting factors. The two different kinds of genetic operators required to work on 

the two types of chromosomes are shown in the sections 2.2.2 and 2.2.4. The coding 

procedures are described in the sections 2.2.1 and 2.2.3. 

2.2.1 Coding procedure for LPs 

Consider a reactor core consisting of 100 positions for fuel loading and the total number 

of FBs loaded in the core is also equal to 100. First, number all the core positions by integers 

from 1to 100. An FB in the base LP is then assigned with the same number as the core 

position into which the FB is loaded as seen in Figure 1. 

Encoding: an LP is encoded into a chromosome of length 100 that is a string of 100 

integer numbers (i1 i2 ... i100), where ik= {1, ..., 100} is the FB number. The position of gene ik 

in the chromosome defines the core position pos(k) into which the FB ik is loaded. 

Decoding: the chromosome (i1 i2 ... i100) is decoded into an LP by loading FB number ik 

into position number pos(k) in the reactor core. 

2.2.2 Genetic operators for integer chromosomes 

GA basically works with three genetic operators: selection, crossover, and mutation [6]. 

Selection carries better solutions into the next generation based on their fitness values. 

Crossover mixes parts of two parent solutions to create two different off-springs. Mutation 

makes some small random changes in the solutions maintaining the diversity of population to 

prevent a premature convergence to local optima.  

In this study, the elitism strategy (ES) [18] is used in selection to preserve the best 

solutions during the search process. A solution A with PPF1and keff1 is dominated by a 

solution B with PPF2 and keff2 if 2 1PPF PPF  and 2 1eff effk k . Any solution that is not 

dominated by others is regarded as a non-dominated solution. The entire population can be 

ranked by sorting through to identify all non-dominated solutions in the archive. Every 

solution in the archive is directly transferred to a breeding pool for the next generation. 

One of the most popular crossover method used in this work is the one-point method. 

For one dimensional integer chromosomes, the one-point crossover is performed by two steps: 

two members of the breeding pool be mated are randomly selected with a crossover 

probability, then the two chromosomes undergo crossing over as follows: an integer position 

k along the chromosome is selected uniformly at random between 1 and the chromosome 

length less one N –1. Two new strings are created by swapping all characters between 

positions k +1 and N inclusively. In case two parents have some genes with the same number, 

crossing these two parents over may create two off-springs which have some identical genes. 
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If this case occurs, small random numbers between 0 and 1 are added to the genes with the 

same value to make a difference between them, and then rank these genes again to make two 

new off-springs. 

Mutation is conducted by a binary shuffle of two genes in the chromosome. A 

chromosome to be mutated is randomly selected with a mutation probability. Then two 

uniformly selected genes of the chromosome are exchanged their positions. 

2.2.3 Coding procedure for weighting factors 

Since the optimization problem in this study has two weighting factors and their sum is 

1, only one of the weighting factors needs to be found in the search process. The other factor

  is certainly defined by (1 –  ). Below is the coding procedure for the factor . 

The factor is encoded into a binary chromosome that is a string of bits 1 or 0. A 

chromosome is represented symbolically by the string of mi: (m1m2...ml) where mi may take 

on a value 1or 0. The length of the string is determined by the precision of and it’s limiting 

range. The length l is the minimum integer that satisfies the following formula: 

 max min 10 2 1n l          (2) 

where min  and max  are the minimum and maximum values of   ,and n is the number 

of digits following the decimal point in the number that represents the value of   . As 

0 1  , the above equation becomes: 

10 2 1n l         (3) 

The binary string is decoded into the real value of   based on the following formula: 

max min
min

1 1

1
2 2

2 1 2 1

l l
l i l i

i il l
i i

m m
 

   

 


    

 
     (4) 

2.2.4 Genetic operators for binary chromosomes 

Genetic operators for the binary chromosomes in this study are similar to the genetic 

operators for integer chromosomes above. Selection is also performed by the roulette wheel 

spin method to create a breeding pool for the next generation. Crossover is performed by the 

one-point method to create two off-springs: First, a pair of strings in the breeding pool is 

randomly chosen with a crossover probability; Then a crossing site k between positions l and l 

–1 is generated uniformly at random; Finally, two new strings are created by swapping all the 

characters between positions k +1and l inclusively. Mutation is performed by randomly 

altering the value of a bit between 1 and 0 with a mutation probability. 

2. 3 A discrete differential evolution algorithm 

A discrete DE algorithm is developed and applies to the problem of fuel reloading 

optimization for the DNRR which loaded with 100 FBs with different fuel burn-up. A 

parameter vector representing a fuel LP has 100 integer variables with the value in the range 

from 1 to 100. A NP-size population at generation G in the DE optimization problem consists 

of NP parameter vectors, each of which is a 100-dimensional parameter vector  

Xi,G = [xj,i,G]      (5) 

where i = 1, 2, …,NP; j = 1, 2, …, 100. 



 5 

To initiate DE search process, an initial NP-size population is randomly generated. Each 

of D variables of NP vectors in the population is randomly assigned by an integer number 

from 1 to 100.  

2.3.1 Mutation 

The strategy DE/rand/1/bin, one of the most promising schemes of Storn and Price 

[19] was used to create the new noisy vector for the next generation (G+1) from the random 

vectors chosen in the current generation G by the following steps. 

An individual of the population is then set as the target vector Xi,G. A noisy vector is 

produced by formula (3) 

Vi,G+1 = Xr1,G + F.(Xr2,G – Xr3,G)    (6) 

where r1, r2, r3 are randomly chosen among NP populations of generation G. F is the 

mutation scale factor F that controls the amplification of the differential variation. Variable 

vj,i,G+1 of the noisy vector Vi,G+1 = [vj,i,G+1] is defined as: 

vj,i,G+1 = xj,r1,G + F.(xj,r2,G – xj,r3,G)    (7) 

2.3.2 Crossover 

Crossover operator generates the trial vector Ui,G+1 = [uj,i,G+1] by the approach given: 

j,i,G+1

j,i,G+1

j,i,G

v  ,   if       (j)
u =

x    ,   otherwise              

rand CR



    (8) 

Where rand(j) is a random number in the interval [0, 1] are generated and compared 

with the crossover constant CR, also in [0, 1]. 

A study on the correlation between CR and F parameters was proceeded to evaluate 

their best operation in the discrete DE algorithm for a 10-dimensional parameter vector. Since 

a large number of calculations, this will be discussed in another report in detail. The obtained 

control parameters are CR = 0.2 and F = 0.4. 

2.3.3 Selection  

The fitness of the adjusted trial vector Ui,G+1 and target vector Xi,G are calculated and 

compared together. The selection is chosen by the following condition: 

, , 1 , , 1 , ,

, , 1

, ,

 ,      if    ( ) ( )

   ,      otherwise

j i G j i G j i G

j i G

j i G

u Fitness u Fitness x
x

x

 




 


   (9)  

This process is first performed for the first individual of the initial population. To 

evolve the second individual of the current population for the next generation, it is set as the 

new target vector and the above process is performed again. The process is repeated until the 

new population is full of NP new vectors. The search process stops when the termination 

criterion is met. 

Coding procedure for LPs 

 In order to apply the DE algorithm to the fuel reloading optimization problem, we 

need a coding procedure to transform a trial vector to an LP and vice versa. In the proposed 

DE algorithm, the trial vector consists of 100 variables which are 100 integer numbers. The 

coding procedure developed for GA in section 2.2.1 can be used. 

3. RESULTS AND DISCUSSION 

In this work, a population of 30 individuals was evolved for 700 generations, so that 

21,000 LPs were examined in the application using the DE algorithm. A manner similar to the 

application using GA, there were totally 42,000 LPs analyzed for the reloading core 

optimization problem of the DNRR. A binary chromosome has the length of 17, representing 

a real number between 0 and 1with 5 digits after the decimal point. The weighting factors for 

the binary mixed integer coded GA are 0.5 and 0.001 of crossover and mutation probability, 
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respectively. These parameters are 0.2 and 0.4 corresponding to the application using the 

discrete DE algorithm.  

 
Fig. 2 Change in the fitness by GA versus generation. 

Figure 2 shows the change of fitness values after 700 generations of GA application to 

the optimal problem of the DNRR. It is found that the GA rapidly approaches the fittest 

solutions after less than 50 generations. The average fitness line is also asymptotic to the 

maximum line prematurely. It is possible that the elitism strategy which directly transfers the 

best individuals of the current generation to the next generation has a dramatic impact on GA 

performance.  

Fig. 3 Change in the fitness by DE versus generation. 

On the other hand, the access of the DE to the fittest solutions is slower but more stable 

than GA which has shown in Figure 3. This finding agrees well with the “divergence 

property” of DE discovered by Storn and Price [19] that prevents the search process from 

advancing slowly in shallow regions of the objective function surface and allows the search 

process to travel through a narrow valley; hence it is robust in searching for the global 

solutions. 

                                     (a)                                                                    (b) 
Fig. 4 Comparison between GA and DE in the maximum (a) and average (b) effective multiplication 

factor of population versus generation. 
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The obtained results on effective multiplication factor and PPF shown in Figures 4-5 

indicate the DE to have better performance in finding the optimal solution than the GA. The 

highest keff values obtained from GA and DE are 1.06569 and 1.06602, respectively. The DE 

has the lowest PPF value of 1.31945, as compared with the GA’s 1.34157. The average keff 

value for the DE is marginally higher while the average PPF for the DE is significantly lower 

with a value of 1.32164 compared to the GA’s 1.34208. 

(a)                                                              (b) 
Fig. 5 Comparison between GA and DE in the minimum (a) and average (b) power peaking factor of 

population versus generation. 

 In general, the DE outperforms the GA in terms of the maximum keff, minimum PPF, 

and the average keff, PPF after 700 generations examine. This indicates that the search process 

of the proposed discrete DE algorithm in the DNRR problem is more efficient than GA’s 

because DE has a strong possibility to explore search space with better solutions. Moreover, 

the proposed discrete DE algorithm fulfills the requirement on the convergence properties of a 

global optimization method like the continuous DE algorithm which has been widely adopted 

in the field of numerous science problems and nuclear technology applications [20-21]. 

4. CONCLUSIONS 

This paper compared two multi-objective evolutionary algorithms, Differential 

Evolution and Genetic Algorithms, which were applied to solving the optimization problem of 

nuclear research reactor fuel reloading. The optimal objectives are both the maximization of 

the length and the minimization of power peaking factor in a fuel cycle. The algorithms were 

applied to the DNRR. Comparative analysis between two methods and with the actual work 

configuration was conducted. The results demonstrate that the performance of the algorithms 

is satisfactory and the DE is more effective than the GA in the DNRR case.  
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NGHIÊN CỨU SO SÁNH THUẬT TOÁN TIẾN HOÁ VI PHÂN VÀ 

THUẬT TOÁN DI TRUYỀN CHO BÀI TOÁN TỐI ƯU HOÁ TÁI NẠP 

NHIÊN LIỆU LÒ PHẢN ỨNG HẠT NHÂN 

Tóm tắt: Tối ưu hoá quản lý nhiên liệu vùng hoạt là một vấn đề rất được quan 

tâm trong lĩnh vực kỹ thuật hạt nhân. Đây là bài toán tối ưu đa mục tiêu với không 

gian lời giải lớn, nhiều hàm mục tiêu ràng buộc và không tuyến tính. Bài báo này 

đề xuất hai cách tiếp cận để giải quyết vấn đề này dựa trên thuật toán tiến hoá vi 

phân và giải thuật di truyền. Mục tiêu đặt ra là đồng thời tối đa hoá thời gian vận 

hành và cực tiểu hoá độ bất đồng đều công suất. Thuật toán được áp dụng cho 

trường hợp của lò phản ứng hạt nhân nghiên cứu Đà Lạt. Các phân tích so sánh 
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hai phương pháp này với nhau và với cấu hình làm việc thực tế cũng được trình 

bày. Kết quả chỉ ra rằng cả hai phương pháp đều đáp ứng tốt, trong đó, thuật toán 

tiến hoá vi phân cho thấy hiệu quả hơn thuật toán di truyền đối với trường hợp lò 

phản ứng hạt nhân Đà Lạt.  

Từ khóa: Tiến hoá vi phân, giải thuật di truyền, tái nạp nhiên liệu, lò phản ứng 

hạt nhân Đà Lạt 


