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Abstract: In this paper, the solution for a one-dimensional (1D) slab geometry multigroup
neutron diffusion eigenvalue problem is achieved by applying the Finite Difference Method
(FDM) to discretize the space to solve it numerically. As regards to the formulation of FDM,
the problem becomes solving an eigenvalue along with its dominant eigenvector to describe
the multiplication factor and the neutron flux distribution vector. Firstly, mathematical
basis of neutron diffusion theory applied in 1D problem is established. Discretization of
the governing equation with respect to space is described next. The criticality problem of
finding the dominant eigenpair is solved by the source iteration (a modified form of power
method), which is also explained in the text. After obtaining all the formulation, the
calculation is then implemented in MATLAB. The numerical is compared with the
analytical solution to verify the fidelity of the proposed method. Good agreement is
observed in the comparison; thus, this proposed work can be applied and expanded to more
complicated diffusion problems in the future. This work contribution is the primary step to
develop a computational tool in nuclear engineering field in Vietnam.
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I. INTRODUCTION

In reactor physics, surveillance of neutron behavior is main drive in the analysis of the
nuclear reactor core. Technically, an essential parameter dominating the physical phenomenon
in the core is the neutron distribution in an arbitrary region which can be achieved by solving
the neutron transport problem. As an accurate prediction of this distribution can be transferred
into the spatial distribution of the reactor power as well as the determination of the slowly time-
varying nuclide densities that occur in an operating reactor resulting in the build-up of other
fissionable isotopes [1,2]. Mathematically, there are two approaches to solve the neutron
transport problem: Deterministic and Stochastic approaches. In terms of the deterministic
methods, the diffusion approach is a straightforward method to achieve the neutron flux;
however, numerical methods are required for this approach. Many methods have been proposed
but the Finite Difference Method [3] (FDM) remains a powerful method due to its transparency
and simplicity in implementation. The FDM is used to reduce the partial differential equation
into ordinary differential equations, which are organized in form of matrix. As regards to the
formulation of FDM, the problem becomes solving an eigenvalue along with its dominant
eigenvector to describe the multiplication factor and the neutron flux distribution vector.

This work presents the solution of a one-dimensional (1D) slab geometry multigroup
neutron problem using boundary and symmetric conditions. Its purpose is to fulfil the need to
acquire a profound knowledge of nuclear reactor physics and to construct a computational tool
to solve neutron transport problems in Vietnam, With a good agreement with the analytical
solution, this work can be extended into more complicated problems such as in two/three-
dimensional (2D/3D) cases by separating the space variables with additional solvers. This paper
is organized as follows. A brief mathematical description of the multigroup neutron diffusion
theory and the analytical solution for 1D case are established firstly. In the next section,
discretization of the governing equation with respect to space is described. The problem of
finding the dominant eigenpair of the transport operator is solved by the source iteration (a
modified form of power method), which is also explained in the text. After obtaining all the
formulation, the calculation is then implemented in MATLAB [4]. The numerical is compared
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with the analytical solution to verify the fidelity of the proposed method in the Results section.
Finally, conclusions and expected future work are presented.

II. MULTIGROUP NEUTRON DIFFUSION THEORY
1. Description of the 1D multigroup neutron diffusion equation

In this section, the equation governing the modeling of the neutron diffusion are briefly
presented. In an energy group g, the time independent equation with Fick’s Law [2]
approximation is given as:
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where the notations are defined as follows.

- g: the energy group index,

- Dg: diffusion constant (cm),

- X, 4: macroscopic removal cross section (cm™),

- X, macroscopic scattering cross section from group g’to group g (cm™),
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- Xf 4t macroscopic fission cross section (cm™),

- v: the average number of neutrons emitted per fission induced in group g;
- Xg: fission spectrum normalized as ¥.5_; x4 = 1,

- ¢4 neutron flux (cm™sec™),

- kejy: effective multiplication factor, g = 1,2, ...G.

Please note that, in above equation, for the sake of diffusion approximation, the
dependence of angle in all terms is neglectable. With the assumption that the medium is
homogeneous, .i.e. the space dependence for parameters can be ignored. The final form of the
1D neutron diffusion equation is:
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The analytical solution for the equation (2) is described in the next section.

2. Analytical solution for the 1D slab geometry multigroup neutron diffusion problem

For the sake of simplicity, here we use two groups of energy, i.e. thermal and fast neutron
group. One can later apply the same process into a higher number of groups depending on his
own interest. Firstly, equation (2) needs transforming into solvable form by applying Laplacian
and rewrite in terms of matrix:
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As can be seen from equation (3), the up-scattering term from thermal group to fast group
is not considered [5]. The neutron flux for both thermal and fast groups are the solution of



partial differential equations of the elliptic type when the time dependency is ignored.
Accordingly, the Helmholtz’s equation is satisfied for group g as [1, 2]:

V29 (x) + Bpy(x) = 0, (4)

with B? is the geometry buckling parameter. Please note the subscript g for the geometry
buckling has been removed to not confuse it with the group index. By combining this condition
to equation (3) yields:
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Algebraically, in order to solve equation (5), the determinant of the coefficient matrix
must be zero. This condition resulted in a quadratic equation:

(B*)? + 2bB? + ¢ = 0, (6)

. 1(2 z vZ Zr1Z 1 VEfF 12y 2+VEfF 2
with b = -<L1 i L) and ¢ = ( 1 T'Z) _ (( faZr2tVIf2 12)).
2\ Dq D, leeff keff DD,

One can easily notice that the term h? — ¢ is always positive due to its only dependency
on the nuclear data parameters. Thus equation (6) always has distinct solutions. After defining
the buckling parameter, attempt to solve the diffusion equation is introduced. With the
assumption of exponential shape in the neutron flux in both thermal and fast region, the general
solution for the thermal flux is illustrated as:

¢, (x) = C; cos(Bx) + C, sin(Bx) . (7)
By substituting ¢, into equation (5), the fast flux is given:
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¢, (x) = (C, cos(Bx) + C, sin(Bx)). (8)

To determine the flux within this reactor, above equations must be solved subject to the
boundary conditions (BCs) that flux vanishes at the extrapolated faces of the slab geometry
illustrated in figure 1, i.e.:
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where: Hg =H+ 2dg,dg = 2.13D,

Due to the symmetry of this problem, there can be no net flow of neutrons at the center
of the plane. Since the neutron current density is proportional to the derivative of flux, this
means that:
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Under those BCs, a system of unknowns can be solved to achieve coefficient C; to express
the neutron flux. Hence, for the thermal group, in such conditions (H, = H):

nm nm
C;=0; B= ?(n is an even number); C, = 0; B = ?(n is an odd number) (11)



Figure 1. Slab reactor geometry

This is satisfied if B assumes any of the values B,,, where:
nm
B, = T (n=1,...0). (12)

After getting the value of buckling, the multiplication factor k,rr now can be obtained,
which will yield a nontrivial solution of the equation (5):
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For the fundamental mode solution, n = 1 associated with the eigenfunction shown as
Equation 14. After obtaining the analytical solution of the neutron flux, the discretization in
space applied in the FDM is presented in the next section.
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ITI. SPACE DISCRETIZATION OF NEUTRON BALANCE EQUATION

In this section, the formulation of FDM applied for the neutron flux is first presented.
After the matrix form of the discrete equation, the inverse power method approach to achieve
the fundamental mode is illustrated.

1. Formulation of FDM applied in diffusion equation based on box-scheme

The first step in developing a numerical solution procedure is to replace the continuous
spatial dependence of the flux, with the values of the average flux at discrete spatial meshes.
Therefore, numerically, the neutron flux can be obtained as long as the number of meshes is
large enough [6]. One can note that the finite different discretized equations solution is
equivalent to the differential equation if only the mesh size approach null. In this 1D problem,

we subdivide the interval 0 < x < H of interest into [ subintervals of length h = ? Based on

the box scheme discretization [7], let’s integrate equation (1) over the node and divide by the
node length h yields:
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Using the definition of the neutron current J [2], the leakage term in node k can be
expressed as:
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Therefore, the general form of the neutron balance at node k is given as:
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Now the boundary conditions (BC) must be considered. Using the albedo boundary
condition [8] which generally expressed as:

Left BC: — —ad® oo, flux zero
Ri thC ,];91 L¢g1+1 ,With a = { 0, net current zero (18)
tgnt Jg 9 0.5, incoming partial current zero

Then the balance equation at the left and right BC are:
(Dg + Dy + Zrgh)d5 — Dy = S, (19)
—Di ¢t + (DI~ + D) + =L ;h)pl = SL. (20)

Combining equation (17), (19), (20) the discretized 1D multigroup neutron diffusion

equation at node k is displayed as in equation (21):
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Therefore, all the nodes in the problem can be expressed in matrix form as:
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As shown in equation (23), the problem now becomes solving the eigenvalue problem as:

kefrp = M7'Fp & (M7IF — koppl)¢p = 0. (25)
Thus, to satisfy equation (25) in the fundamental mode, ¢ is an eigenvector associated

with the dominant eigenvalue k,fr. Applying the eigenvalue iteration method [6, 7, 8] for outer

iteration and Jacobi method [9] to solve the linear system Ax = b, the iteration scheme to

achieve ¢ and k. is given in figure 2.
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Figure 2. Iteration scheme to calculate k¢ and ¢
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IV. RESULTS AND DISCUSSION

After obtaining all the formulation of the discretized equation, a MATLAB [4] script is
written to perform the calculation. This section presents the result for a homogenous bare slab
reactor. Finally, the conclusion and discussion are drawn in the end of this section.

1. Result of homogeneous bare slab reactor

The results obtained in both analytical solution and numerical solution for the neutron
diffusion equation have been compared in this sub-section. Table I displays the nuclear data
used in the homogeneous slab reactor with the size of 40cm. In the calculation process, the
solver includes outer iteration and inner iteration using Jacobi method [9] as shown in Figure
2. With the convergence criteria is 10, Figure 3 and 4 illustrate the distribution of multigroup
neutron flux and the fission source. In addition, the multiplication factor k.fs is compared
between FDM and analytical solution given in equation (13) illustrating in Table II. The
simulation for this simple problem with 100 FDM nodes and two groups of energy requires
0.142 seconds.
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Figure 3. Average flux distribution Figure 4. Fission source distribution

As illustrated, the results from FDM agrees very well with the analytical solution. In terms
of the multiplication factor k,f¢, only 2 pcm is observed. One may realize that using a large
number of node leads to tht

Table 1. Group constants used in homogeneous slab reactor [7]

Group 12%; 2, g D
1 5.32328E-03 2.61000E-02 1.74514E-2 1.436040
2 9.52684E-02 6.20800E-02 1.25211E-3 0.398363
Table II. Comparison of multiplication factor between FDM and equation (5)
Multiplication factor Analytical FDM
kerr 0.8977743 0.8977955

2. Conclusion and Discussion

The objective of this work was verified and obtained. The FDM solver script can be
applied to 1D geometry multigroup slab reactor and generate the multiplication factor as well
as the flux distribution. In our 1D simple case, using the mesh size of 0.4 cm in 100 nodes, it
requires around 8 iterations to achieve the convergence after 0.142 seconds. In the iteration
process, we also applied the Wielandt Shift [10] to predict the dominant ratio to accelerate the
convergence speed of both fission source and the multiplication factor. In this work, only
homogeneous case was considered, however, using the similar spacing discretization scheme,



it can be expanded to heterogeneous case, which presents the reflector in the reactor.
Furthermore, by applying same process in each direction, this work can also work for 3D cases.
The only drawback of FDM is its extensive computational resources requirement to achieve a
good accuracy because the mesh size must be smaller than the thermal diffusion length. As a
result, in a practical problem, to achieve a fair fidelity, FDM code must use 106 meshes for all
directions, thus it is not good to bear such a burden. In the future development of simulation
code, advanced numerical methods will be applied and coupled with the FDM solver,
particularly, the transverse integrated nodal method (TINM) [1, 2] will be the candidate for our
implementation.
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GIAI BAI TOAN TRI RIENG TRONG KHUECH TAN NEUTRON MQT
CHIEU PA NHOM SU DUNG PHUONG PHAP SAI PHAN HU'U HAN

NGUYEN HOANG NHAT KHANG, CAO THANH LONG, HO MANH DUNG
Trung tdm Hat nhan Tp. Ho Chi Minh, 217 Nguyén Trdi, Quén 1, Thanh phé Ho Chi Minh

Email: nhnknhatkhang@unist.ac.kr

Tém tit ndi dung: Trong nghién ctru ndy, 101 giai cho bai toan khuéch toan neutron
mot chidu da nhoém duoc tinh toan dura trén phuong phap sai phan hiru han (FDM).
Trong qua trinh hinh thanh cac hé phuong trinh st dung trong FDM, bai toan
khuéch tan neutron tré thanh bai toan tinh trj riéng 16n nhét va vector tri riéng tuong
g dé dién ta hé sb nhan neutron va phan b théng luong neutron. Pau tién, cac
mo hinh toan co ban ap dung trong bai toan khuéch tan mot chiéu duoc trinh bay,
Tiép theo 1 phan chia nho bai toan theo khong gian dé hinh thanh hé phuong trinh
cho FDM. Sau d6 1a viéc tinh toan t&i han dé tim cap tri riéng va vector tri riéng
giai bang phuong phap lip ngudn dugc trinh bay chi tiét trong bai viét nay. Sau khi
hinh thanh duogc hé théng cac phuong trinh, viéc trién khai thuc hién tinh toan duoc
dwa trén phan mém MATLAB. Céc két qua tinh toan bang phuong phap s6 duoc so
sanh v&i phuong phéap giai tich dé danh gia tinh tin cdy cta phwong phap. Véi sai
s6 gan nhu 1a khong dang ké, cach giai dé xuét nay co thé ap dung cho cac bai toan
khuéc tan phirc tap hon trong twong lai. Nghién ctru nay 1a buéc khoi dau trong
viéc x4y dung cong cu tinh toan 16 phan tng trong ciing nhu hd tro phap trién nganh
ky thuat hat nhan ¢ Viét Nam.

Tir khéa: Phwong trinh khuéch tan, FDM, vt Iy 1o phdn irng, phwong phdp sé
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