
1 
 

ONE-DIMENSIONAL MULTIGROUP NEUTRON DIFFUSION 
EIGENVALUE PROBLEM SOLUTION USING FINITE DIFFERENCE 

METHOD 
NGUYEN HOANG NHAT KHANG, CAO THANH LONG, HO MANH DUNG 

Center for Nuclear Technologies, 217th Nguyen Trai St., 1st District, Ho Chi Minh City 

Email: nhnknhatkhang@unist.ac.kr  
Abstract: In this paper, the solution for a one-dimensional (1D) slab geometry multigroup 
neutron diffusion eigenvalue problem is achieved by applying the Finite Difference Method 
(FDM) to discretize the space to solve it numerically. As regards to the formulation of FDM, 
the problem becomes solving an eigenvalue along with its dominant eigenvector to describe 
the multiplication factor and the neutron flux distribution vector. Firstly, mathematical 
basis of neutron diffusion theory applied in 1D problem is established. Discretization of 
the governing equation with respect to space is described next. The criticality problem of 
finding the dominant eigenpair is solved by the source iteration (a modified form of power 
method), which is also explained in the text. After obtaining all the formulation, the 
calculation is then implemented in MATLAB. The numerical is compared with the 
analytical solution to verify the fidelity of the proposed method. Good agreement is 
observed in the comparison; thus, this proposed work can be applied and expanded to more 
complicated diffusion problems in the future. This work contribution is the primary step to 
develop a computational tool in nuclear engineering field in Vietnam.  

Keywords: Diffusion, FDM, reactor physics, numerical methods 

I. INTRODUCTION 
In reactor physics, surveillance of neutron behavior is main drive in the analysis of the 

nuclear reactor core. Technically, an essential parameter dominating the physical phenomenon 
in the core is the neutron distribution in an arbitrary region which can be achieved by solving 
the neutron transport problem. As an accurate prediction of this distribution can be transferred 
into the spatial distribution of the reactor power as well as the determination of the slowly time-
varying nuclide densities that occur in an operating reactor resulting in the build-up of other 
fissionable isotopes [1,2]. Mathematically, there are two approaches to solve the neutron 
transport problem: Deterministic and Stochastic approaches. In terms of the deterministic 
methods, the diffusion approach is a straightforward method to achieve the neutron flux; 
however, numerical methods are required for this approach. Many methods have been proposed 
but the Finite Difference Method [3] (FDM) remains a powerful method due to its transparency 
and simplicity in implementation. The FDM is used to reduce the partial differential equation 
into ordinary differential equations, which are organized in  form of matrix. As regards to the 
formulation of FDM, the problem becomes solving an eigenvalue along with its dominant 
eigenvector to describe the multiplication factor and the neutron flux distribution vector.  

This work presents the solution of a one-dimensional (1D) slab geometry multigroup 
neutron problem using boundary and symmetric conditions. Its purpose is to fulfil the need  to 
acquire a profound knowledge of nuclear reactor physics and to construct a computational tool 
to solve neutron transport problems in Vietnam, With a good agreement with the analytical 
solution, this work can be extended into more complicated problems such as in two/three-
dimensional (2D/3D) cases by separating the space variables with additional solvers. This paper 
is organized as follows. A brief mathematical description of the multigroup neutron diffusion 
theory and the analytical solution for 1D case are established firstly. In the next section, 
discretization of the governing equation with respect to space is described. The  problem of 
finding the dominant eigenpair of the transport operator is solved by the source iteration (a 
modified form of power method), which is also explained in the text. After obtaining all the 
formulation, the calculation is then implemented in MATLAB [4]. The numerical is compared 
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with the analytical solution to verify the fidelity of the proposed method in the Results section. 
Finally, conclusions and expected future work are presented.  

II. MULTIGROUP NEUTRON DIFFUSION THEORY 
1. Description of the 1D multigroup neutron diffusion equation  

In this section, the equation governing the modeling of the neutron diffusion are briefly 
presented. In an energy group 𝑔𝑔 , the time independent equation with Fick’s Law [2] 
approximation is given as: 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐽𝐽𝑔𝑔(𝑥𝑥)���
−𝐷𝐷𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙𝑔𝑔(𝑥𝑥)

+ Σ𝑟𝑟,𝑔𝑔(𝑥𝑥)𝜙𝜙(𝑥𝑥) = � Σ𝑔𝑔′𝑔𝑔(𝑥𝑥)𝜙𝜙𝑔𝑔′(𝑥𝑥)
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

+
𝜒𝜒𝑔𝑔
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

� 𝜈𝜈Σ𝑓𝑓,𝑔𝑔′(𝑥𝑥)𝜙𝜙𝑔𝑔′(𝑥𝑥)
𝐺𝐺

𝑔𝑔′=1

, (1) 

where the notations are defined as follows. 

- 𝑔𝑔: the energy group index,  

- 𝐷𝐷𝑔𝑔: diffusion constant (cm), 

- Σ𝑟𝑟,𝑔𝑔: macroscopic removal cross section (cm-1), 

- Σ𝑔𝑔𝑔𝑔′: macroscopic scattering cross section from group 𝑔𝑔′to group 𝑔𝑔 (cm-1), 

- Σ𝑓𝑓,𝑔𝑔′: macroscopic fission cross section (cm-1), 

- 𝜈𝜈: the average number of neutrons emitted per fission induced in group 𝑔𝑔; 

- 𝜒𝜒𝑔𝑔: fission spectrum normalized as ∑ 𝜒𝜒𝑔𝑔𝐺𝐺
𝑔𝑔=1 = 1, 

- 𝜙𝜙𝑔𝑔: neutron flux (cm-2sec-1), 

- 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒: effective multiplication factor, 𝑔𝑔 = 1,2, …𝐺𝐺. 

Please note that, in above equation, for the sake of diffusion approximation, the 
dependence of angle in all terms is neglectable. With the assumption that the medium is 
homogeneous, .i.e. the space dependence for parameters can be ignored. The final form of the 
1D neutron diffusion equation is:  

−𝐷𝐷𝑔𝑔
𝑑𝑑2

𝑑𝑑𝑥𝑥2
𝜙𝜙𝑔𝑔(𝑥𝑥) + Σ𝑟𝑟,𝑔𝑔𝜙𝜙𝑔𝑔(𝑥𝑥) = � Σ𝑔𝑔′𝑔𝑔𝜙𝜙𝑔𝑔′(𝑥𝑥)

𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

+
𝜒𝜒𝑔𝑔
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

� 𝜈𝜈Σ𝑓𝑓,𝑔𝑔′𝜙𝜙𝑔𝑔′(𝑥𝑥)
𝐺𝐺

𝑔𝑔′=1

.  (2) 

The analytical solution for the equation (2) is described in the next section. 

2. Analytical solution for the 1D slab geometry multigroup neutron diffusion problem 
For the sake of simplicity, here we use two groups of energy, i.e. thermal and fast neutron 

group. One can later apply the same process into a higher number of groups depending on his 
own interest. Firstly, equation (2) needs transforming into solvable form by applying Laplacian 
and rewrite in terms of matrix: 

�
−𝐷𝐷1∇2 + Σ𝑟𝑟,1 0

−Σ12 −𝐷𝐷2∇2 + Σ𝑟𝑟,2
 � ∙ �𝜙𝜙1

(𝑥𝑥)
𝜙𝜙2(𝑥𝑥)� =

1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

�𝜈𝜈Σ𝑓𝑓,1 𝜈𝜈Σ𝑓𝑓,2
0 0

� �𝜙𝜙1
(𝑥𝑥)

𝜙𝜙2(𝑥𝑥)�.  (3) 

As can be seen from equation (3), the up-scattering term from thermal group to fast group 
is not considered [5]. The neutron flux for both thermal and fast groups are the solution of 
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partial differential equations of the elliptic type when the time dependency is ignored. 
Accordingly, the Helmholtz’s equation is satisfied for group 𝑔𝑔 as [1, 2]: 

∇2𝜙𝜙𝑔𝑔(𝑥𝑥) + 𝐵𝐵2𝜙𝜙𝑔𝑔(𝑥𝑥) = 0, (4) 

with 𝐵𝐵2 is the geometry buckling parameter. Please note the subscript 𝑔𝑔 for the geometry 
buckling has been removed to not confuse it with the group index. By combining this condition 
to equation (3) yields: 

�
𝐷𝐷1𝐵𝐵2 + Σ𝑟𝑟,1 0

−Σ12 𝐷𝐷2𝐵𝐵2 + Σ𝑟𝑟,2
 � ∙ �𝜙𝜙1

(𝑥𝑥)
𝜙𝜙2(𝑥𝑥)� =

1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

�𝜈𝜈Σ𝑓𝑓,1 𝜈𝜈Σ𝑓𝑓,2
0 0

� �𝜙𝜙1
(𝑥𝑥)

𝜙𝜙2(𝑥𝑥)� . (5) 

Algebraically, in order to solve equation (5), the determinant of the coefficient matrix 
must be zero. This condition resulted in a quadratic equation: 

(𝐵𝐵2)2 + 2𝑏𝑏𝐵𝐵2 + 𝑐𝑐 = 0,  (6) 

with 𝑏𝑏 = 1
2
�Σr,1
𝐷𝐷1

+ Σr,2
𝐷𝐷2

− 𝜈𝜈Σ𝑓𝑓,1

𝐷𝐷1𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
� and 𝑐𝑐 = �Σ𝑟𝑟,1Σ𝑟𝑟,2

𝐷𝐷1𝐷𝐷2
� − 1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
��𝜈𝜈Σ𝑓𝑓,1Σ𝑟𝑟,2+𝜈𝜈Σ𝑓𝑓,2Σ12�

𝐷𝐷1𝐷𝐷2
�.  

One can easily notice that the term 𝑏𝑏2 − 𝑐𝑐 is always positive due to its only dependency 
on the nuclear data parameters. Thus equation (6) always has distinct solutions. After defining 
the buckling parameter, attempt to solve the diffusion equation is introduced. With the 
assumption of exponential shape in the neutron flux in both thermal and fast region, the general 
solution for the thermal flux is illustrated as: 

𝜙𝜙2(𝑥𝑥) = 𝐶𝐶1 cos(𝐵𝐵𝐵𝐵) + 𝐶𝐶2 sin(𝐵𝐵𝐵𝐵) . (7) 

By substituting 𝜙𝜙2 into equation (5), the fast flux is given: 

𝜙𝜙1(𝑥𝑥) =
�−𝐷𝐷2∇2 + Σ𝑟𝑟,2�

Σ21
(𝐶𝐶1 cos(𝐵𝐵𝐵𝐵) + 𝐶𝐶2 sin(𝐵𝐵𝐵𝐵)).  (8) 

To determine the flux within this reactor, above equations must be solved subject to the 
boundary conditions (BCs) that flux vanishes at the extrapolated faces of the slab geometry 
illustrated in figure 1, i.e.: 

𝜙𝜙𝑔𝑔 �
𝐻𝐻�𝑔𝑔
2
� = 𝜙𝜙𝑔𝑔 �−

𝐻𝐻�𝑔𝑔
2
� = 0, (9) 

where: 𝐻𝐻�𝑔𝑔 = 𝐻𝐻 + 2𝑑𝑑𝑔𝑔,𝑑𝑑𝑔𝑔 = 2.13𝐷𝐷𝑔𝑔 

Due to the symmetry of this problem, there can be no net flow of neutrons at the center 
of the plane. Since the neutron current density is proportional to the derivative of flux, this 
means that: 

𝑑𝑑𝜙𝜙𝑔𝑔(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 0, 𝑥𝑥 = 0 ↔ 𝜙𝜙𝑔𝑔(−𝑥𝑥) = 𝜙𝜙𝑔𝑔(𝑥𝑥). (10) 

Under those BCs, a system of unknowns can be solved to achieve coefficient 𝐶𝐶𝑖𝑖 to express 
the neutron flux. Hence, for the thermal group, in such conditions (𝐻𝐻�2 ≅ 𝐻𝐻): 

𝐶𝐶1 = 0;  𝐵𝐵 =
𝑛𝑛𝑛𝑛
𝐻𝐻

(𝑛𝑛 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛); 𝐶𝐶2 = 0;𝐵𝐵 =
𝑛𝑛𝑛𝑛
𝐻𝐻

(𝑛𝑛 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) (11) 
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Figure 1. Slab reactor geometry 

This is satisfied if B assumes any of the values 𝐵𝐵𝑛𝑛, where: 

𝐵𝐵𝑛𝑛 =
𝑛𝑛𝑛𝑛
𝐻𝐻

 (𝑛𝑛 = 1, … .∞).  (12) 

After getting the value of buckling, the multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 now can be obtained, 
which will yield a nontrivial solution of the equation (5): 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
�𝜈𝜈Σ𝑓𝑓,2Σ12 + 𝜈𝜈Σ𝑓𝑓,1�𝐷𝐷2𝐵𝐵𝑛𝑛2 + Σ𝑟𝑟,2��

�𝐷𝐷1𝐵𝐵𝑛𝑛2 + Σ𝑟𝑟,1� × �𝐷𝐷2 + Σ𝑟𝑟,2�
. (13) 

For the fundamental mode solution, n = 1 associated with the eigenfunction shown as 
Equation 14. After obtaining the analytical solution of the neutron flux, the discretization in 
space applied in the FDM is presented in the next section.  

𝐵𝐵 =
𝜋𝜋
𝐻𝐻

 ;  𝜙𝜙2(𝑥𝑥) = cos �
𝜋𝜋
𝐻𝐻
𝑥𝑥� ;𝜙𝜙1(𝑥𝑥) =

�𝐷𝐷2 �
𝜋𝜋
𝐻𝐻�

2
+ Σ𝑟𝑟,2�

Σ12
�cos �

𝜋𝜋
𝐻𝐻
𝑥𝑥�� .  (14) 

III. SPACE DISCRETIZATION OF NEUTRON BALANCE EQUATION 
In this section, the formulation of FDM applied for the neutron flux is first presented. 

After the matrix form of the discrete equation, the inverse power method approach to achieve 
the fundamental mode is illustrated. 

1. Formulation of FDM applied in diffusion equation based on box-scheme 
The first step in developing a numerical solution procedure is to replace the continuous 

spatial dependence of the flux, with the values of the average flux at discrete spatial meshes. 
Therefore, numerically, the neutron flux can be obtained as long as the number of meshes is 
large enough [6]. One can note that the finite different discretized equations solution is 
equivalent to the differential equation if only the mesh size approach null. In this 1D problem, 
we subdivide the interval 0 ≤ 𝑥𝑥 ≤ 𝐻𝐻 of interest into 𝐼𝐼 subintervals of length ℎ = 𝐻𝐻

𝐼𝐼
. Based on 

the box scheme discretization [7], let’s integrate equation (1) over the node and divide by the 
node length ℎ yields: 

� �
𝑑𝑑
𝑑𝑑ℰ

𝐽𝐽𝑔𝑔𝑘𝑘 + Σ𝑟𝑟,𝑔𝑔
𝑘𝑘 𝜙𝜙𝑔𝑔𝑘𝑘� 𝑑𝑑ℰ

1

0
= �

⎣
⎢
⎢
⎢
⎡

1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝜒𝜒𝑔𝑔𝑘𝑘 � 𝜈𝜈Σ𝑓𝑓,𝑔𝑔′
𝑘𝑘 𝜙𝜙𝑔𝑔𝑘𝑘

𝐺𝐺

𝑔𝑔′=1

+ � Σ𝑔𝑔′𝑔𝑔
𝑘𝑘 𝜙𝜙𝑔𝑔′

𝑘𝑘
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔 ⎦

⎥
⎥
⎥
⎤
𝑑𝑑ℰ

1

0
,  (15) 

with ℰ = 𝑥𝑥
ℎ
↔ 𝑑𝑑𝑑𝑑 = ℎ𝑑𝑑ℰ and  Σ𝑟𝑟,𝑔𝑔 

𝑘𝑘 = Σ𝑡𝑡,𝑔𝑔
𝑘𝑘 − Σg𝑔𝑔𝑘𝑘 . 
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Using the definition of the neutron current 𝐽𝐽  [2], the leakage term in node 𝑘𝑘  can be 
expressed as: 

� 𝑑𝑑𝑑𝑑 �
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐷𝐷𝑔𝑔(𝑥𝑥)
𝑑𝑑𝜙𝜙𝑔𝑔
𝑑𝑑𝑑𝑑

� 
𝑥𝑥𝑘𝑘+

ℎ
2

𝑥𝑥𝑘𝑘−
ℎ
2

≈ 𝐷𝐷𝑔𝑔
𝑑𝑑𝜙𝜙𝑔𝑔
𝑑𝑑𝑑𝑑

|
𝑥𝑥𝑘𝑘+

ℎ
2
− 𝐷𝐷𝑔𝑔

𝑑𝑑𝜙𝜙𝑔𝑔
𝑑𝑑𝑑𝑑

|
𝑥𝑥𝑘𝑘−

ℎ
2

 

=
1
2
�𝐷𝐷𝑔𝑔𝑘𝑘 + 𝐷𝐷𝑔𝑔𝑘𝑘+1�

�𝜙𝜙𝑔𝑔𝑘𝑘+1 − 𝜙𝜙𝑔𝑔𝑘𝑘�
ℎ

−  
1
2
�𝐷𝐷𝑔𝑔𝑘𝑘−1 + 𝐷𝐷𝑔𝑔𝑘𝑘�

�𝜙𝜙𝑔𝑔𝑘𝑘 − 𝜙𝜙𝑔𝑔𝑘𝑘−1�
ℎ

 

(16) 

Therefore, the general form of the neutron balance at node 𝑘𝑘 is given as: 

−𝐷𝐷�𝑔𝑔𝑘𝑘−1𝜙𝜙𝑔𝑔𝑘𝑘−1 + �𝐷𝐷�𝑔𝑔𝑘𝑘−1 + 𝐷𝐷�𝑔𝑔𝑘𝑘 + Σ𝑟𝑟,𝑔𝑔
𝑘𝑘 ℎ�𝜙𝜙𝑔𝑔𝑘𝑘 − 𝐷𝐷�𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘+1 = 𝑆𝑆𝑔𝑔𝑘𝑘 ,    (17) 

where: 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐷𝐷�𝑔𝑔𝑘𝑘−1 =

2𝛽𝛽𝑔𝑔𝑘𝑘−1𝛽𝛽𝑔𝑔𝑘𝑘

𝛽𝛽𝑔𝑔𝑘𝑘 + 𝛽𝛽𝑔𝑔𝑘𝑘−1
,𝐷𝐷�𝑔𝑔𝑘𝑘 =

2𝛽𝛽𝑔𝑔𝑘𝑘𝛽𝛽𝑔𝑔𝑘𝑘+1

𝛽𝛽𝑔𝑔𝑘𝑘 + 𝛽𝛽𝑔𝑔𝑘𝑘+1
,𝛽𝛽𝑔𝑔𝑘𝑘 =

𝐷𝐷𝑔𝑔𝑘𝑘

ℎ

𝑆𝑆𝑔𝑔𝑘𝑘 = ℎ

⎝

⎜
⎛ 1
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝜒𝜒𝑔𝑔𝑘𝑘 � 𝜈𝜈Σ𝑓𝑓,𝑔𝑔′
𝑘𝑘 𝜙𝜙𝑔𝑔𝑘𝑘

𝐺𝐺

𝑔𝑔′=1

+ + � Σ𝑔𝑔′𝑔𝑔
𝑘𝑘 𝜙𝜙𝑔𝑔′

𝑘𝑘
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔 ⎠

⎟
⎞

 (17) 

Now the boundary conditions (BC) must be considered. Using the albedo boundary 
condition [8] which generally expressed as:  

�
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐵𝐵𝐵𝐵:  𝐽𝐽𝑔𝑔0 = −𝛼𝛼𝐿𝐿𝜙𝜙𝑔𝑔0

𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 𝐵𝐵𝐵𝐵:  𝐽𝐽𝑔𝑔𝐼𝐼+1 = −𝛼𝛼𝑅𝑅𝜙𝜙𝑔𝑔𝐼𝐼+1
 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛼𝛼 = �

∞,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
0,𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

0.5, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
 (18) 

Then the balance equation at the left and right BC are: 

�𝐷𝐷�𝑔𝑔0 + 𝐷𝐷�𝑔𝑔1 + Σ𝑟𝑟,𝑔𝑔
1 ℎ�𝜙𝜙𝑔𝑔1 − 𝐷𝐷�𝑔𝑔1𝜙𝜙𝑔𝑔2 = 𝑆𝑆𝑔𝑔1,  (19) 

−𝐷𝐷�𝑔𝑔𝐼𝐼−1𝜙𝜙𝑔𝑔𝐼𝐼−1 + �𝐷𝐷�𝑔𝑔𝐼𝐼−1 + 𝐷𝐷�𝑔𝑔𝐼𝐼 + Σ𝑟𝑟,𝑔𝑔
𝐼𝐼 ℎ�𝜙𝜙𝑔𝑔𝐼𝐼 = 𝑆𝑆𝑔𝑔𝐼𝐼 . (20) 

Combining equation (17), (19), (20) the discretized 1D multigroup neutron diffusion 
equation at node 𝑘𝑘 is displayed as in equation (21): 

−𝑙𝑙𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘−1 + 𝑑𝑑𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘 − 𝑢𝑢𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘+1 = 𝑆𝑆𝑔𝑔𝑘𝑘 =
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔𝑘𝑘 ℎ � 𝜈𝜈Σ𝑓𝑓,𝑔𝑔′

𝑘𝑘 𝜙𝜙𝑔𝑔𝑘𝑘
𝐺𝐺

𝑔𝑔′=1

 
�����������

𝜓𝜓𝑘𝑘

+ ℎ � Σ𝑔𝑔′𝑔𝑔
𝑘𝑘 𝜙𝜙𝑔𝑔′

𝑘𝑘
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

 

↔ −𝑙𝑙𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘−1 + 𝑑𝑑𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘 − 𝑢𝑢𝑔𝑔𝑘𝑘𝜙𝜙𝑔𝑔𝑘𝑘+1 − ℎ � Σ𝑔𝑔′𝑔𝑔
𝑘𝑘 𝜙𝜙𝑔𝑔′

𝑘𝑘
𝐺𝐺

𝑔𝑔′=1
𝑔𝑔′≠𝑔𝑔

=
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝜒𝜒𝑔𝑔𝑘𝑘𝜓𝜓𝑘𝑘  

(21) 

with:  

𝑙𝑙𝑔𝑔𝑘𝑘 = 𝐷𝐷�𝑔𝑔𝑘𝑘−1;   𝑢𝑢𝑔𝑔𝑘𝑘 = 𝐷𝐷�𝑔𝑔𝑘𝑘;   𝑑𝑑𝑔𝑔𝑘𝑘 = 𝑙𝑙𝑔𝑔𝑘𝑘 + 𝑢𝑢𝑔𝑔𝑘𝑘 + ℎΣ𝑟𝑟,𝑔𝑔
𝑘𝑘  (22) 

Therefore, all the nodes in the problem can be expressed in matrix form as: 
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𝑀𝑀𝑀𝑀 =
1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝐹𝐹𝐹𝐹 (23) 

where:  

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡
𝐷𝐷1 𝑈𝑈1 0 ⋯ 0
𝐿𝐿2 𝐷𝐷2 𝑈𝑈2 ⋯ 0
0 ⋱ ⋱ ⋱ 0
0 0 𝐿𝐿𝐼𝐼−1 𝐷𝐷𝐼𝐼−1 𝑈𝑈𝐼𝐼−1
0 0 ⋯ 𝐿𝐿𝐼𝐼 𝐷𝐷𝐼𝐼 ⎦

⎥
⎥
⎥
⎤

,𝐷𝐷𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡ 𝑑𝑑1𝑘𝑘 0
−ℎΣ12𝑘𝑘 𝑑𝑑2𝑘𝑘

⋱
−ℎΣ1𝐺𝐺𝑘𝑘 ⋯ −ℎΣ𝐺𝐺−1,𝐺𝐺

𝑘𝑘 𝑑𝑑𝐺𝐺𝑘𝑘⎦
⎥
⎥
⎥
⎤
 

𝐿𝐿𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡−𝑙𝑙1

𝑘𝑘 0 0
0 ⋱ 0

0 −𝑙𝑙𝐺𝐺−1𝑘𝑘 0
0 0 −𝑙𝑙𝐺𝐺𝑘𝑘⎦

⎥
⎥
⎥
⎤

,𝑈𝑈𝑘𝑘 =

⎣
⎢
⎢
⎢
⎡−𝑢𝑢1

𝑘𝑘 0 0
0 ⋱ 0

0 −𝑢𝑢𝐺𝐺−1𝑘𝑘 0
0 0 −𝑢𝑢𝐺𝐺𝑘𝑘⎦

⎥
⎥
⎥
⎤
 

𝜙𝜙 = ��𝜙𝜙𝑔𝑔1 𝜙𝜙𝑔𝑔+11 …𝜙𝜙𝐺𝐺1� �𝜙𝜙𝑔𝑔2 𝜙𝜙𝑔𝑔+12 …𝜙𝜙𝐺𝐺2�… �𝜙𝜙𝑔𝑔𝐼𝐼  𝜙𝜙𝑔𝑔+1𝐼𝐼 …𝜙𝜙𝐺𝐺𝐼𝐼 ��
𝑇𝑇
 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡𝐹𝐹

1 0 0
0 ⋱ 0

0 𝐹𝐹𝑘𝑘 0
0 ⋱ 0

0 0 𝐹𝐹𝐼𝐼⎦
⎥
⎥
⎥
⎤

,𝐹𝐹𝑘𝑘 = ℎ

⎣
⎢
⎢
⎢
⎢
⎡𝜒𝜒1

𝑘𝑘𝜈𝜈Σ𝑓𝑓1𝑘𝑘 ⋯ 𝜒𝜒1𝑘𝑘𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘 ⋯ 𝜒𝜒1𝑘𝑘𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘

𝜒𝜒2𝑘𝑘𝜈𝜈Σ𝑓𝑓1𝑘𝑘 ⋯ 𝜒𝜒2𝑘𝑘𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘 ⋯ 𝜒𝜒2𝑘𝑘𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘

⋮ ⋮ ⋮
𝜒𝜒𝑔𝑔′𝑘𝑘 𝜈𝜈Σ𝑓𝑓1𝑘𝑘 ⋯ 𝜒𝜒𝑔𝑔′

𝑘𝑘 𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘 ⋯ 𝜒𝜒𝑔𝑔′
𝑘𝑘 𝜈𝜈Σ𝑓𝑓𝑓𝑓𝑘𝑘

0 0 0 0 0 ⎦
⎥
⎥
⎥
⎥
⎤

 

(24) 

As shown in equation (23), the problem now becomes solving the eigenvalue problem as: 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 = 𝑀𝑀−1𝐹𝐹𝐹𝐹 ↔ �𝑀𝑀−1𝐹𝐹 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼�𝜙𝜙 = 0. (25) 

Thus, to satisfy equation (25) in the fundamental mode, 𝜙𝜙 is an eigenvector associated 
with the dominant eigenvalue 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒. Applying the eigenvalue iteration method  [6, 7, 8] for outer 
iteration and Jacobi method [9] to solve the linear system 𝐴𝐴𝐴𝐴 = 𝑏𝑏, the iteration scheme to 
achieve 𝜙𝜙 and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 is given in figure 2. 

 
Figure 2. Iteration scheme to calculate 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 and 𝜙𝜙 
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IV. RESULTS AND DISCUSSION 
After obtaining all the formulation of the discretized equation, a MATLAB [4] script is 

written to perform the calculation. This section presents the result for a homogenous bare slab 
reactor. Finally, the conclusion and discussion are drawn in the end of this section.  

1. Result of homogeneous bare slab reactor  
The results obtained in both analytical solution and numerical solution for the neutron 

diffusion equation have been compared in this sub-section. Table I displays the nuclear data 
used in the homogeneous slab reactor with the size of 40cm. In the calculation process, the 
solver includes outer iteration and inner iteration using Jacobi method [9] as shown in Figure 
2. With the convergence criteria is 10-5, Figure 3 and 4 illustrate the distribution of multigroup 
neutron flux and the fission source. In addition, the multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  is compared 
between FDM and analytical solution given in equation (13) illustrating in Table II. The 
simulation for this simple problem with 100 FDM nodes and two groups of energy requires 
0.142 seconds.  

  

Figure 3. Average flux distribution Figure 4. Fission source distribution 

As illustrated, the results from FDM agrees very well with the analytical solution. In terms 
of the multiplication factor 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒, only 2 pcm is observed. One may realize that using a large 
number of node leads to tht 

Table 1. Group constants used in homogeneous slab reactor [7] 

Group 𝜈𝜈Σ𝑓𝑓 Σ𝑟𝑟 Σ𝑔𝑔𝑔𝑔′  D 
1 5.32328E-03 2.61000E-02 1.74514E-2 1.436040       
2 9.52684E-02 6.20800E-02 1.25211E-3 0.398363 

Table II. Comparison of multiplication factor between FDM and equation (5) 

Multiplication factor Analytical FDM 
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 0.8977743 0.8977955 

2. Conclusion and Discussion  
The objective of this work was verified and obtained. The FDM solver script can be 

applied to 1D geometry multigroup slab reactor and generate the multiplication factor as well 
as the flux distribution. In our 1D simple case, using the mesh size of 0.4 cm in 100 nodes, it 
requires around 8 iterations to achieve the convergence after 0.142 seconds. In the iteration 
process, we also applied the Wielandt Shift [10] to predict the dominant ratio to accelerate the 
convergence speed of both fission source and the multiplication factor. In this work, only 
homogeneous case was considered, however, using the similar spacing discretization scheme, 
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it can be expanded to heterogeneous case, which presents the reflector in the reactor. 
Furthermore, by applying same process in each direction, this work can also work for 3D cases. 
The only drawback of FDM is its extensive computational resources requirement to achieve a 
good accuracy because the mesh size must be smaller than the thermal diffusion length. As a 
result, in a practical problem, to achieve a fair fidelity, FDM code must use 106 meshes for all 
directions, thus it is not good to bear such a burden. In the future development of simulation 
code, advanced numerical methods will be applied and coupled with the FDM solver, 
particularly, the transverse integrated nodal method (TINM) [1, 2] will be the candidate for our 
implementation.  
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GIẢI BÀI TOÁN TRỊ RIÊNG TRONG KHUẾCH TÁN NEUTRON MỘT 
CHIỀU ĐA NHÓM SỬ DỤNG PHƯƠNG PHÁP SAI PHÂN HỮU HẠN 

NGUYỄN HOÀNG NHẬT KHANG, CAO THANH LONG, HỒ MẠNH DŨNG 

Trung tâm Hạt nhân Tp. Hồ Chí Minh, 217 Nguyễn Trãi, Quận 1, Thành phố Hồ Chí Minh 

Email: nhnknhatkhang@unist.ac.kr  

 

Tóm tắt nội dung: Trong nghiên cứu này, lời giải cho bài toán khuếch toán neutron 
một chiều đa nhóm được tính toán dựa trên phương pháp sai phân hữu hạn (FDM).  
Trong quá trình hình thành các hệ phương trình sử dụng trong FDM, bài toán 
khuếch tán neutron trở thành bài toán tính trị riêng lớn nhất và vector trị riêng tương 
ứng để diễn tả hệ số nhân neutron và phân bố thông lương neutron. Đầu tiên, các 
mô hình toán cơ bản áp dụng trong bài toán khuếch tán một chiều được trình bày, 
Tiếp theo là phần chia nhỏ bài toán theo không gian để hình thành hệ phương trình 
cho FDM. Sau đó là việc tính toán tới hạn để tìm cặp trị riêng và vector trị riêng 
giải bằng phương pháp lặp nguồn được trình bày chi tiết trong bài viết này. Sau khi 
hình thành được hệ thống các phương trình, việc triển khai thực hiện tính toán được 
dựa trên phần mềm MATLAB. Các kết quả tính toán bằng phương pháp số được so 
sánh với phương pháp giải tích để đành giá tính tin cậy của phương pháp. Với sai 
số gần như là không đáng kể, cách giải để xuất này có thể áp dụng cho các bài toán 
khuếc tán phức tạp hơn trong tương lai. Nghiên cứu này là bước khởi  đầu trong 
việc xây dựng công cụ tính toán lò phản ứng trong cũng như hỗ trợ pháp triển ngành 
kỹ thuật hạt nhân ở Việt Nam. 

Từ khóa: Phương trình khuếch tán, FDM, vật lý lò phản ứng, phương pháp số 
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