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Abstract: Relying on the Navier-Stokes equations in cylindrical coordinate and the
characteristics of the flow in a gas centrifuge, we derive the set of equations describing
the movement and the state of the flow. Basing upon the finite element method to find the
appropriate solution of the Onsager’s equation (which is also called master potential )
which was presented by Max D. Gunzburger, a computer program is written by using
Maple programming tool to implement the algorithm discussed in the method. In addition,
to show the viability of the program, the numerical example for flow driven by a linear
temperature gradient along the wall of the centrifuge is presented. Stream function v,
radial and axial momenta p,u and p,w can be deduced from the master potential. These
physically variables play an important role in the diffusion-convection equation which is
the main part in separation theory. The theoretical analysis of a gas centrifuge provides an
understanding of how the flow affects isotope separation and may suggest means of
altering the flow profile to improve performance. Such calculations also permit us to
optimize the performance of the centrifuge and guide experiments which are used to test
the machine.
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method.

I. INTRODUCTION

In the context of energy crisis in the world, the nuclear power attracts the interest of
many nations. Nowadays, the nuclear power plants provide 13-14% of the world electricity
and this percentage grows relentlessly. However, uranium, the fuel for nuclear power plants,
is unavailable in the coarse form. Only the very small percentage of U-235 (0.72%) in the
uranium ore, the rest is U-238 (99.27%) and U-234 (0.72%) [1]. In a nuclear fission, U-235
plays an important role because of its high cross section in thermal neutron absorption. In
order to process uranium ore for nuclear fuel, the percentage of U-235 needs increasing, this
is called uranium enrichment. In industry, the gas centrifuge method is most used to enrich U-
235 due to its small consuming power compared with other methods. In this method, the U-
238 component is separated from U-235 by the difference in centripetal force exerted on them.
Therefore, conducting the theoretical analysis of the gas centrifuge is necessary in nuclear
fuel research. Such calculations can be used to guide experiments and provide the
understanding of how the flow affects isotope separation.

In the theoretical analysis of the gas centrifuge, the Onsager’s equation plays an
important role. This equation is derived from the continuity, momentum, energy, and state
equations for a viscous compressible gas. In centrifuge, it is assumed that rotation rates are
sufficiently high so that all the gas is confined to a narrow annulus near the cylinder wall [2].
In addition, it is supposed that the flow represents a small perturbation to the isothermal solid-
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body rotation [3]. The boundary conditions which are requisite to solve Onsager’s equation
are also considered.

Searching the solution to the Onsager equation has attracted interest of many scientists.
In this text, we present the finite element method proposed by Max D. Gunzburger [2] to find
an approximate solution to the equation. The computer program is written by the use of Maple
programming tool to implement the algorithm described in the method. In our work, only the
homogeneous form of Onsager equation is considered and the solution is presented in the case
of linear gradient temperature along the wall.

Il. GAS DYNAMICS

1. Perturbations from the equilibrium

Let (r, 8, z) be the cylindrical coordinates with the origin fixed in the bottom of the
centrifuge on the axis of rotation. In the absence of mechanical and thermal perturbations of
the gas in the rotor, the thermodynamic equilibrium is achieved and the gas rotates as a rigid
body.

The pressure ratio or density ratio between an interior radius r and the outer wall of the
centrifuge at radius a is:
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where the dimensionless quantity A is defined by:
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where M is molecular weight of the gas, Q is angular velocity of the centrifuge, R is specific
gas constant and Ty is gas temperature in equilibrium conditions.

The flow field becomes much more complex when circulation currents are generated.
Let (u,v,w) be perturbations of the velocity components, and (p’, p’, T") are the corresponding
perturbations of the pressure peg, density peq and temperature Tp (the subcript “eq” indicates
the quantity is considered in equilibrium conditions) [3].

2. Equations of motion of the gas flow in cylindrical coordinates

There are six linearized equations which are derived from conservation equations by
linearizing them about equilibrium solution:
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3. Onsager’s pancake equation:

By the use of equation (1), only regions next to solid boundaries contain gas at
significant density. The gas kept close to the rotor wall by the strong centrifugal force flows
primarily in axial direction. This circulation forms a boundary layer called Stewartson layer.
Onsager showed that the linearized conservation equations can be reduced to a single sixth-
order partial differential equation which describes the countercurrent flow in the Stewartson
layer. The combining equations (2a), (2b), (2c), (2d), (2e) and (2f) yields:
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where y is the master potential and X, y are the nondimensional variables, x = A? (1 — :—2)
andy = 2 The dimensionless group B is given by: B = %RZ—;E, where Re is Reynolds number.

The quantity S is defined: S = 1 + A%Pr % where Pr is Prandtl number and vy is specific heat
ratio.

As we discussed previously, due to the high speed of rotation the gas is confined to the
region near the rotor wall. Hence, the Onsager equation is only considered in the domain
which is given by the setD = {0 < x < xr,0 <y < yr}, wherey; = %0 (zo is the height of
the rotor) and Xt is chosen to simulate “the top of the atmosphere” at which the gas density
becomes extremely small. Equation (3) requires boundary conditions. There are two axial
boundary conditions at the bottom end and top caps derived from the Ekman layer analysis
and 6 radial boundary conditions [2].

I1l. SOLUTION TO ONSAGER’S EQUATION

1. Finite element method for Onsager’s equation

The finite element method to find the approximate solution to Onsager’s equation is
presented by Max D. Gunzburger [2]. In his method, the finite-dimensional variational
problem is defined by: Seeking a function x;, € V;, such that:

B(Xn, 1) = C(pp) forall dy, € Vi, (4)
where ¢y, is a test function and:
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where Lj is the differential operator given by: LzF = (e*Fy )y, f(y) = %(%) , Ta IS
x=0

the gas temperature at the rotor wall, go(x) and g;(x) are quantities in the boundary
conditions of the gas at the bottom and top end caps [2].

Gunzburger considered the domain D = {0 < x < x1,0 <y < yr}. Partitioning the
interval 0 < x < x¢ into M contiguous subintervals [x,,x,41], p=0,1,...,M-1, where 0 =
Xg <X; < ..<xy =xr and the interval 0 <y <yg into N contiguous subintervals
[vq Yq+1], 6=0.1,....,N-1, where 0 =y, <y; <...<yy =yr. The domain D is partitioned
into MN rectangles [x,, xp+1] * [Yq, Yq+1]-
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Fig.1. Partition of the intervals 0 < x < xpand 0 <y < yr
Make use of cubic spline functions to construct the set of basis functions of Vy, [2]. The
solution x;, can be expressed as follow:
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where o;(x), s;(y) are the cubic spline functions. The finite-dimensional variational problem
(4) is now given by: Seek the solution to a linear system of algebraic equations:

Ac=d (6)
where ¢ and d are the column vectors in R and A is a K x K matrix.

By the use of equation (6), seeking solution to Onsager’s equation is equivalent to
determining the matrix c. After obtaining the matrices A and d, the matrix c can be calculated
by: c = A~ld.

2. Example and program

Table 1 Centrifuge parameters [2], [4]

Parameter Meaning Value
20 Height of the rotor 3.35m
A Radius of the rotor 0.1m
Na Peripheral speed 700 m/s
To Temperature of the gas in 300 K
equilibrium conditions




A See (1) 5.88

B See (3) 16.74
Pr Prandtl number 0.7

Re Reynolds number 1.94 x 10°
Y Specific heat ratio 1.0935

A computer program has been written to implement the algorithm discussed in the finite
element method. The calculations are conducted with the parameters described in Table 1.
The wall thermal drive is chosen as the mechanism to generate the countercurrent flow in gas
centrifuge. In this case, a linear temperature gradient is applied along the wall of the
centrifuge. The difference between the temperature of the top and bottom end caps is 1K and
the hotter is the bottom end cap [2].

Some boundary conditions can be simplified as follow:
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The elements Ay of the matrix A and d, of matrix d can be written in the form [2]:
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Each integral in Ak need considering as a sum of integrals which are calculated in the
domains [x,,Xp+1] OF [yq,¥q+1]- In each domain, the integral is calculated by Gauss—
Legendre quadrature for 2 points.

IV. RESULT AND DISCUSSION

The result of the calculations is presented with M=N=2, x1=8. In this case, A is a matrix
of 5 X 5, d and ¢ is the column vectors of R>. The computer program’s output is:

1.111 x 107°
[ 8.799 x 10710 l
c=|-7.784 x 10710
6.719 x 107° J
—7.504 x 107°

The axial momentum peqw is determined as follow:
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As many materials of the gas centrifuge technique are not published, the gas parameters
we used in our program are not completely valid. We try to restrict the error as much as
possible by the use of parameters of the gas fairly similar to UFg (the parameters of SFg
employed in the program [4]). In addition, the Gauss—Legendre quadrature for 2 points
reduces significantly the program’s validity. Moreover, because the procedures to calculate
the variables pw is not completed, its value is only presented with M=N=2. The small number
of sub-intervals makes the definitions of this variables vulnerable.

V. CONCLUSION

In our work, the gas dynamics and thermodynamic analyses of the countercurrent flow
in a gas centrifuge are reported. Relying on the equations of motion of the gas flow in
cylindrical coordinates and the characteristics of the flow in a gas centrifuge, the set of
equations describing the movement and the state of the flow is derived. The steps to evolve
the Onsager’s pancake equation and its boundary conditions are also summarized.

With the help of the computer, the solution to Onsager’s equation is derived. We
present the result of the program with specific values of the parameters. However, this
program has a lot of drawbacks. To obtain a more exact solution to Onsager’s equation, we
need to obtain the exact parameters of the gas UFs, involve the feed injection and gas
removing and use Gauss-Legendre quadrature for 4 points to calculate the integrals in
equation (8) and (9).

The axial momentum p.,w, which is determined through the solution to Onsager’s
equation, plays an important role in separation analysis of the gas flow in a centrifuge. This
quantity is necessary to solve the axial enrichment equations in enriching and stripping
sections. The solution to these equations is used to calculate the separative power (kg U-
235/year) , the key to gas centrifuge design.
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LY THUYET LAM GIAU URANIUM BANG PHUGNG PHAP LY TAM

Toém tit: Phuong trinh Navier-Stokes trong hé toa do tru va cac dic diém caa dong khi di
chuyén trong mdy li tdim duoC sur dung dé rat ra hé cac phuong trinh mo ta trang théi va
su chuyén dong cua dong khi. Str dung phuong phap phan tir hiru han cua tac gia Max D.
Gunzburger ,ching t6i xay dung chuong trinh bang cong cu Maple dé tim 1oi giai xap Xi
cho phuong trinh Onsager (con goi la thé diéu khién y) trong truong hop co ché diéu
khién dong bang gradient nhiét do tuyén tinh. Viéc tim dugc thé didu khién y gilp xac
dinh dugc ham dong vy, thanh phan momen theo phuong ban kinh pou va theo phuong
truc z p,w, nhing dai luong vat ly quan trong dé giai phuong trinh khuéch tan-ddi luu
trong ly thuyét chia tach ddng vi. Viéc tinh toan ly thuyet gilp chdng t6i md phong hoat
dong cuia may li tdm tir d6 tim ra nhitng didu kién t6i wu dé viéc chia tach dong vi U™ va
U8 dat hiéu suat cao nhat.



