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Introduction

o Artificial Intelligence (AI)

o Long history; broad range of methods and areas of application

o Notable successes of machine learning (ML) (deep learning)

o AI in engineering research and technology applications

o Fault detection, predictive maintenance, autonomous control

o Rapidly growing interest in applications of AI/ML/DA in 
diverse, complex tasks in nuclear reactor engineering

o From LWRs to advanced reactors (SMR, microreactors) to 
NHES (Nuclear Hybrid Energy System)

o Construction, O&M, fuel management

o Research (e.g., multiscale bridging in T-H, multiphysics; core 
optimization)

o …
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Adopted after Ackoff (1988) and Rowley (2006).



Data-Driven Techniques 

q Data science (aka data analytics, predictive analytics, statistical 
learning, “big data” techniques, machine learning) are all built upon 
data mining algorithms that are recognized and executed by computer.

q The objective is to extract knowledge and insight from massive data 
and information automatically. 

q Advanced data science techniques (e.g., signature identification, 
feature selection, clustering analysis, dimensionality reduction) have 
been found instrumental, capable, and effective in extracting patterns 
and knowledge from large amounts of data of complex systems



Model-based prediction

Physics-based modeling

Model-free prediction
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DNS: Direct Numerical Simulation
PIML: Physics Informed (Constrained) Machine Learning



Technical background

o Machine learning
o Regression 

Data (inputs)
X = {x1,…,xn}

Machine
Learning

ML-based thermal fluid closures
ML(X) ≈ Y 

Data (targets)
Y = {y1,…,yn}

Available, relevant, and adequately evaluated data 



Deep Neural Networks (DNN)

Deep neural networks exhibit good properties

v Expressiveness
Ø DNN with proper weights  set up can approximate 

any continuous functions 

v Optimization
Ø DNN can be optimized and converges with 

stochastic gradient descent (SGD)
Ø Hyperparameters has strong influence on DNN 

performance, requires trial-and-error along the 
training process

v Generalization
Ø DNN usually has good performance in predicting 

the case it has not been trained on 
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Needs and Opportunities

• Sub-grid-scale (SGS) physics models (or so-called closure relations) 
determine the accuracy of thermal-fluid modeling, and they are 
essential for simulation codes.

• "Big" data in thermal-hydraulics become available with advanced 
thermal and flow diagnostic methods such as infrared thermometry 
and PIV (Particle image velocimetry) techniques, and high-fidelity 
simulation (LES, DNS, ITM) 

• Deep learning (DL) is a universal approximator [Hinton, 1989], 
– Capturing multi-scale, multi-physics processes 

– Discovering the underlying correlations behind the data to 
achieve the cost-effective closure development for 

• new geometries, new coolants or system conditions (new designs). 
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Mechanistic vs. Data-Driven Modeling Framework
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[*] -potential to shorten the time and efforts 
required for development and assessment of 
predictive capability

[*]



Lessons learned

• Deep learning can assist in development of data-driven nuclear thermal-
hydraulics simulation.
– Allowing cost-effective model developments.
– Using non-parametric models to capture underlying correlations behind a 

substantial amount of data.

– Making use of information content of large datasets generated in 
advanced experiments and numerical simulations.

• Collection, qualification, and management of data are instrumental for the “Big 
Data” to become useful in data-driven modeling (DDM) 

• The growing interest and potential application of DDM creates a new domain 
in V&V of scientific and technical computing, namely of Verification and 
Validation of codes that involve machine-learning-based data-driven models.

• No “one shoe fits all”
11



Type-I (physics-separated) ML

Type-II (physics-evaluated) ML 

Type-III (physics-integrated) ML

Type-IV (physics-recovered) ML 

Type-V (physics-discovered) ML 
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Physics-informed data-driven frameworks for model development



Development of a Nearly Autonomous 
Management and Control System (NAMAC) 

in Advanced Reactors

A comprehensive, data/knowledge-driven, AI-based control
system for credible, consistent management of plant operations
to improve safety and performance in advanced reactors
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Operator-Centric to NAMAC-Enabled Control Architecture
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– Comprehensive scenario-based model of plant. 

– Digital-twin technology to effectively compute plant 
behaviors and keep track plant operational history while 
continuously assimilating current-plant-state data in 
ongoing simulation of plant behavior. 

– Advanced algorithms in machine learning for effective 
search and optimization.

NAMAC Technological Basis
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NAMAC Technology Impact

Ø NAMAC diagnoses the plant state, projects the effects of actions and 
uncertainties into the future behavior and determine the best strategy to 
cope any situation with respect to the plant safety, performance, and cost. 

Ø NAMAC enables a smaller operational staff to manage the plant better than 
any human(s) currently can, assisted only by instrumentation, operator 
training, and procedures. 

Ø NAMAC system implementation has potential to affect the plant risk profile 
(with implications for system design, SSC and EPZ) through reducing 
operator errors, and promoting dynamic and effective management of 
abnormal transient and accident scenarios.



Concluding Remarks

o AI and “Big Data” bring new challenges:
• New risk profile, new threats and vulnerability
• “AI Safety”, reliability, human-AI-system interactions
• Machine learning trustworthiness (V&V and UQ)
• Data sharing, collaboration vs. competition
• Regulation 

o Education and Training: 
• Meeting industry projected needs and enabling trends

o R&D: demand on quality of data and data generation 
• “Data-friendly” nuclear engineering methods and tools
• From getting on a ML/AI ride; to return to “driver’s seat”



Thank you!

Wishing you a successful 
VINANST-14 Conference!


