TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Performance comparison of ANN-based model and Empirical Correlation for Void Fraction Prediction of Subcooled Boiling Flow in Vertical Upward Channel

Authors: Ngoc Dat NGUYEN & Van Thai NGUYEN Speaker: Ngoc Dat NGUYEN Email: dat.nguyenngoc.hust@gmail.com

ONE LOVE. ONE FUTURE.

- Predictive method using empirical correlations
- Predictive method using ANN-based model
- Results and Discussion
- Conclusion

- Subcooled boiling flow have become challenging issues in safety analysis of water-cooled nuclear power reactors.
- Thermal-hydraulic system codes and *Computational Fluid Dynamic* (CFD) solvers are promising tools. However, it requires a lot of correlations with uncertainties of model parameter and model forms.
- The Artificial Neural Network (ANN) is a powerful machine learning tool.
- This study investigates the performance and applicability of the ANN-based model and the empirical correlations for void fraction prediction.

 Experiment data of void fraction axial-distribution performed by previous studies in vertical channels were used to assess the correctness accuracy of typical empirical correlations and the ANN-based model.

Author(s)	D _h (mm)	L_{heated} (m)	$q^{\prime\prime}$ (kW/m^2)	$G \\ (kg/m^2 - s)$	$\begin{array}{l} \Delta T_{sub,in} \\ (K) \end{array}$	p _{in} (bar)
Ferrell (1964) [7]	11.84	2.44	230 - 682	134 - 1785	28 - 126	4 - 17
Rouhani (1966) [8]	13.00	1.09	600 - 1220	121 - 1445	6 - 150	9 - 50
Zeitoun (1994) [9]	12.70	0.30	207 - 705	139 - 412	12 - 31	1 - 1.7
Devkin (1998) [10]	10 - 12	0.4 - 1.5	132 - 2210	126 - 2123	4 - 171	11 - 150
Situ et al (2004) [11]	19.1	1.73	98 - 151	475 - 1181	8 - 13	1.26 - 1.36
Lee et al (2009) [12]	19.1	1.73	50 - 193	481 - 1939	8 - 15	1.32 - 1.48
SUBO (2010) [13,14]	25.52	3.1	364 - 568	1104 - 2129	17 - 30	1.8 - 2.0
Lee et al (2012) [15]	18.5	1.61	133 - 320	476 - 1061	12 - 21	1.15 - 1.6
<i>Ozar et al (2013)</i> [16]	19.1	2.8	109 - 241	445 - 1844	10 - 28	2.2 - 9.5
Brooks et al (2014) [17]	19.1	2.85	241 - 264	933 - 957	13 - 15	3.3 - 5.0
Overall	11.84 - 25.52	0.3 – 3.1	50 - 2210	121 – 2129	4 – 171	1 - 150

• Database including **308 cases** with a total of **2016 data points**.

Predictive method using empirical correlations

Schematic of Void Fraction evolution in Subcooled flow boiling (Cai et al, 2021)

Predictive method using empirical correlations

Corelations of NVG point

- NVG point: the location where there is a high probability of bubble leaving the wall, leading to an increase in significant of void fraction parameter.
- Saha & Zuber (1974)

$$\chi_{e,nvg} = \begin{cases} -0.0022 \frac{q''c_{pf}D_h}{h_{fg}k_f}, Pe < 70000\\ -153.85 \frac{q''}{h_{fg}G}, Pe \ge 70000 \end{cases} \qquad Pe = \frac{G.D_h.c_{pf}}{k_f}$$

• Ha et al (2020)

$$\chi_{e.nvg} = \begin{cases} -\frac{q''c_{pf}D_h}{h_{fg}k_f} \left[0.0901 - 0.0893 \exp\left(-\frac{158}{Pe}\right) \right], u^* \le 1.3\\ -\frac{q''c_{pf}D_h}{h_{fg}k_f} \frac{Re^{-0.77}Pr^{-1.35}}{0.0959} , u^* > 1.3 \end{cases}$$

$$u^* = \frac{G}{1.53\rho_f} \left[\frac{\rho_f^2}{g\sigma(\rho_f - \rho_g)} \right]^{0.25}$$

Correlations of Void Fraction

Homogenerous flow model:

$$\alpha_H = \frac{1}{1 + \frac{1 - \chi \rho_g}{\chi \rho_f}}$$

• Slip ratio model:

✓ Ahmad (1970)

$$\alpha = \frac{1}{1 + \frac{1 - \chi}{\chi} \left(\frac{GD_h}{\mu_f}\right)^{-0.016} \left(\frac{\rho_g}{\rho_f}\right)^{0.795}}$$

✓ Cai et al (2021)

$$\alpha = \frac{1}{1 + \frac{1 - \chi}{\chi} \left(\frac{\rho_g}{\rho_f}\right)^{0.7988}}$$

• Drift-flux model:

✓ Dix (1971)

$$\alpha = \frac{\chi}{C\left[\chi + \frac{\rho_g}{\rho_f}(1-\chi)\right] + \frac{\rho_g u_{gj}}{G}}$$
$$C = \frac{\chi \rho_f}{\chi \rho_f + (1-\chi)\rho_g} \left[1 + \frac{(1-\chi)\rho_g}{\chi \rho_f}\right]^b; b = \left(\frac{\rho_f}{\rho_g}\right)^{0.1}; u_{gj} = 2.9 \left[\frac{g\sigma(\rho_f - \rho_g)}{\rho_f^2}\right]^{0.25}$$

Predictive method using ANN-based

Structure of ANN-based model with multilayer feedforward net

Predicted results are compared with experiment data through

• Mean Absolute Error (MAE):

$$MAE = \frac{1}{n} \sum_{i} \left| \alpha_{i,pred} - \alpha_{i,exp} \right|$$

• Coefficient of Determination (R):

$$R = 1 - \frac{\sum_{i} (\alpha_{i,pred} - \alpha_{i,exp})^{2}}{\sum_{i} (\alpha_{i,exp} - \alpha_{mean})^{2}}$$

Mean absolute errors of 8 empirical correlation models and ANN-based model against experimental data

Author(s)		Overall	Ferrell	Rouhani	Zeitoun	Devkin	Situ	Lee	SUBO	Lee	Ozar	Brooks
$\chi_{e,nv,q}$	α	MAE	1964	1966	1994	1998	2004	2009	2010	2012	2013	2014
Saha&Zuber	HM	0.473	0.394	0.497	0.737	0.134	0.526	0.433	0.712	0.879	0.725	0.770
Saha&Zuber	Ahmad	0.375	0.312	0.523	0.605	0.078	0.317	0.240	0.569	0.763	0.600	0.625
Saha&Zuber	Dix	0.369	0.316	0.507	0.593	0.057	0.339	0.266	0.600	0.800	0.612	0.650
Saha&Zuber	Cai	0.364	0.309	0.494	0.589	0.071	0.293	0.218	0.545	0.742	0.576	0.598
На	HM	0.485	0.385	0.626	0.769	0.155	0.548	0.473	0.697	0.869	0.725	0.759
Ha	Ahmad	0.387	0.299	0.527	0.639	0.097	0.357	0.274	0.558	0.741	0.599	0.613
На	Dix	0.380	0.302	0512	0.628	0.075	0.387	0.303	0.589	0.779	0.612	0.636
На	Cai	0.375	0.295	0.499	0.623	0.087	0.337	0.251	0.535	0.719	0.574	0.585
ANN-based	model	0.020	0.027	0.013	0.020	0.012	0.016	0.021	0.017	0.019	0.034	0.036

- Zeitoun (1994)
- Situ et al (2004)
- ▲ Lee et al (2009)
- Lee et al (2012)
- Orar et al (2013)
- Brooks et al (2014)
- SUBO
- * Ferrell (1964)
- Rouhani (1966)
- Devkin (1998)

Comparison of experimental data with predicted results

ANN-based model

Work Efficiently in the low pressure range (1-10 bar) and inlet subcooling range 10-30 K

Conclusions

- Investigation different empirical correlations to predict void fraction of subcooled boiling flow.
- Proposes the data-driven model based on ANN, which provides better predictive performance the empirical correlations.
- This study is the first step to build the ANN-based model to replace mathematical models implemented in CFD codes.

[1] Y. Liu, N Dinh, Y Sato. B Niceno. "Data-driven modeling for boiling heat transfer: using deep neural networks and high-fidelity simulation results", *Applied Thermal Engineering*, 144(5), 2018.

[2] S. Azizi et al., "Prediction of void fraction for gas-liquid flow in horizontal, upward and downward inclined pipes using artificial neural network", *International Journal of Multiphase Flow*, 87, 2016.

[3] G. Su et al., "Applications of artificial neural network for the prediction of flow boiling curves", *Journal of Nuclear Science and Technology*, 39(11), 2002.

[4] N. Bar et al., "Prediction of frictional pressure drop using Artificial Neural Network for air-water flow through U-bend", International Conference on Computational Intelligence: Modeling Techniques and Applications (CTMTA), 2013.

[5] X. Liang et al., "A data driven deep neural network model for predicting boiling heat transfer in helical coils under high gravity", *Journal of Heat and Mass Transfer*, 166, 2021.

[6] C. Cai et al., "Assessment of void fraction models and correlations for subcooled boiling in vertical upflow in circular tube", *International Journal of Heat and Mass Transfer*, 171, 2021.

[7] J.K. Ferrell (1964), "A study of convection boiling inside channels", Raleigh, North Carolina, US.

[8] S.Z. Rouhani (1966), "Void measurements in the regions of subcooled and low quality boiling, Part 2. Higher Mass Velocities", Stockholm, Sweden.

[9] O.M. Zeitoun (1994), "Subcooled Flow Boiling and Condensation", Ph. D Thesis, McMaster University, Canada.

[10] A.S. Devkin, A.S. Podosenov (1998), "RELAP5/MOD3 Subcooled boiling model assessment", U.S Nuclear Regulatory Commission, United States.

[11] R. Situ et al., "Axial development of subcooled boiling flow in an internally heated annulus", *Experiments in Fluids*, 37, 589-603, 2004.

[12] T.H. Lee et al., "Axial developments of interfacial area and void concentration profiles in subcooled boiling flow of water", *International Journal of Heat and Mass Transfer*, 52, 473-487, 2009.

[13] B.J. Yun et al., "Characteristics of the local bubble parameters of a subcooled boiling flow in an annulus", *Nuclear Engineering and Design*, 240, 2010.

[14] B.J. Yun et al., "Experimental investigation of local two-phase flow parameters of a subcooled boiling flow in an annulus", *Nuclear Engineering and Design*, 240, 2010.

[15] T.H. Lee et al., "Local interfacial structure of subcooled boiling flow in a heated annulus", *Journal of Nuclear Science and Technology*, 45(7), 683-697, 2012.

[16] B. Ozar et al., "Interfacial area transport of vertical upward stream-water two-phase flow in an annular channel at elevated pressures", *International Journal of Heat and Mass Transfer*, 57, 504-518, 2013.

[17] C.S. Brooks et al., "Interfacial area transport of subcooled boiling flow in a vertical annulus", *Nuclear Engineering and Design*, 268, 152-163, 2014.

[18] G.E. Dix (1971), "Vapor void fractions for forced convection with subcooled boiling at low flow rates", Ph. D Thesis, University of California, United States.

[19] P. Saha, N. Zuber, "Point of net vapor generation and vapor void fraction in subcooled boiling", *International Heat Transfer Conference Digital Library*, 4, 175-179, 1974.

[20] T.W. Ha et al., "Improvement of the subcooled boiling model for thermal-hydraulic system codes", *Nuclear Engineering and Design*, 364, 2020.

[21] S.Y. Ahmad, "Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling", *Journal of Heat Transfer*, 70, 1970.

[22] N. Zuber, J. Findlay, "Average volumetric concentration in two-phase flow systems", *Journal of Heat Transfer*, 87, 453-468, 1965.

hust.edu.vn f fb.com/dhbkhn

THANK YOU !